
Universal API Viewer

Purpose
The purpose of this universal API viewer is to allow both Transformation and Hierarchal Transformations

on any and all APIs. This functions similarly to a Custom Data Source, however incorporates classes and

structure to be able to define Parent-child relationship, as well as trick Kentico into thinking that the

data coming back are “Page Types” so you can define your hierarchal transformations based on that set

Page Type.

Features
 Convert external APIs and handle them as if they were Kentico Pages/Objects.

 Hierarchical Transformation and normal Transformation fully supported.

 Order By and Where conditions supported for the API results.

 Select Top N, Skip N, and Select Top N Level supported to allow Pagination / limiting.

o When Selecting N items in Hierarchy Results, set the ‘Select Top N Level’ (0 based) to tell

the system what level to limit the results by.

o Any Parents or children of that Selected Level that are within the Skip N / Top N range

will be loaded and presented for transformation.

 Works with the Webpart to API Converter tool (Additional Custom Web Part in Marketplace)

Limitations
 Could not get the Default Pagination system working with this customization.

 Requires defining custom classes to match API and logic to fill those objects.

o Examples provided for XML and JSON parsing, and matching Kentico Page Type objects

“test.Food” and “test.FoodType”

Methodology
This Universal API system works as a modified version of the “Universal Viewer with Custom Query” web

part, which allows you to create a custom query of the Kentico Page structures and define in the Child-

Parent relationship. Instead of querying the Kentico Tree/Document tables, it instead will take your API

and build its own Data Table, including the key columns that are needed for Kentico to detect what Page

Type the data row is and who’s child/parent it is, and what order it’s in.

This is done through a custom Class called “ApiUniversalViewerObject” which contains the fields that

normally are present in the Tree/Document tables in Kentico (such as NodeID, NodeCladdID,

NodeParentID, NodeLevel, NodeOrder, SiteName, Published, etc), and the logic to set them.

Configuration
Since APIs are unique in their results, this web part requires you to do some modification to the backend

.cs file to prepare it for absorbing your API. Once you do this, and define in Kentico a Page Type that

matches the Properties of the custom classes you create, you can then use Kentico’s Transformation

system to style your API results.

Step 1: Clone the UniversalAPIViewer Web Part & Set up Custom Fields
Since each API is unique, please clone the base Web Part first. You will be making back end changes, as

well as you will most likely need to add custom Fields so you can properly query your API (for example, if

you are referencing Google’s GeoCode API, you will want to send it an address field or something

similar).

Step 2: Create your custom Page Types for Transformation
Since you will be mapping the API to Page Types in Kentico, you will need to first create the Page Type so

you have a class name to pass to your custom classes.

Create your own Page Types that the API will use. For each Child object, you should create a separate

Page type (example, if your API is a Breakfast menu with Food Items that have lists of sub Types, you

should create a ‘Food’ Page Type and a ‘Food Type’ Page Type).

Define the fields for the Page Types you created. Again these field names MUST match the Property

names of the class, as the system will convert Properties into Column Names.

Step 3: Create your Custom Classes
In your copy of the ApiUniversalViewer.ascx.cs file, you need to adjust the region called “MODIFY ME:

Custom Classes to house API Results.” Here you will place classes that you will load the API data into.

Please ensure the following are followed:

 All classes must inherit the ApiUniversalViewerObject.

 Any ‘Children’ or Sub-Arrays of that object must be of the type List<ApiUniversalViewerObject>.

 You must set the ClassName value to match the Page Type class name in Kentico.

 The class should at some point during initialization call the “InitializeBase” function with the

Next NodeID, the ParentID, ParentIDPath, Level, and Order.

o These fields set up the information so the system can mimic Kentico’s Parent/Child

structure

 You should override the ObjectHasChildren property to return true or false if any Children or

Sub Arrays have values.

Here is what is provided in the Initial Sample:

Step 3: Modify the “GenerateDataTableFromAPI()” to Query and Parse your API Results
The function GenerateDataTableFromAPI() is a sample function that will Query your API and parse it into

a List<UniversalApiViewerObject>, which are appended to a Data Table and returned.

The first portion is getting your data from your API. There are examples of JSON and XML values that

would be returned and processed, but this you would modify to get the information you want. Use your

custom fields in the web part to pass values to your API.

The second portion is converting that data into your class. Example functions of “XmlToObject” and

“JsonToObject” are provided to show how you would take your API results and parse them into that list

of ApiUniversalViewerObjects.

The Third portion is defining your Data Table. Once you create a blank Data Table, call the

“AddColumnPropertiesToDataTable” method, giving it the class type of the top level class. This will

gather a list of all the properties of itself and any sub classes and create a data table that has those

properties as columns:

The Final portion is to then loop through the List of ApiUniversalViewerObjects and append the data

rows to the table. The class will automatically handle all the child object rows, placing Nulls in columns

that do not apply to that class.

Lastly, return the data table.

Step 4: Create your Transformations
From this point onwards, the rest behaves like normal Kentico repeaters. Simply create transformations

using the Page Types that you created in step 2 to render your results. Included with this Web Part are

the test.Food and test.FoodType Page Types which correspond to the sample API and renderings, along

with the Hierarchy transformation “test.Food.Test”

