
Advanced Category Selector

Installation:

1. Import the AdvancedCategorySelectorX_X.zip into your site.
2. You must check “Import Code Files” and “Import global folders.”
3. After import, you must resign your macros in order for the control to render properly.

See Kentico Documentation on resigning your macros, or go to System → Macros →
Signatures, check “Sign all macros” and click “Update macro signatures.”

The Advanced Category Selector should be the last Category Selector you'll ever need. It's
highly configurable and capable of handling multiple different scenarios. Below I will outline
the options and what they do.

 Root Category

◦ The root of where the categories you wish to select reside. Useful if you have
categories structured in the Category Tree by category type. Note you can further
extend what Categories show through the “Where” condition, discussed later.

 Category Display Mode

◦ There are 2 ways to select your categories, a searchable List, and a structured
Tree (the Category Tree).

◦ Tree Options

▪ Expand to Level: You can have your Category Tree expanded to the nth level
by default. Useful if you have a lot of categories in a tree and you wish to have
some nodes collapsed.

▪ Only Leaf Selectable: If checked, only the bottom level categories (leaf on the
tree) can be selected. This is useful if parent Categories are more for structure
and less for actual categories you wish to apply.

▪ Parent Selects Children: If Only Leaf Selectable is true, and this is true, the
parent nodes can be 'checked' but they simply act as a way to select all /
deselect all their descendent leaf nodes.

 Minimum / Maximum Categories: Can control what number of categories can be
selected, great if you wish to have only X amount or at least X categories.

 Separator Character: For saving to Field, you can control what character acts as the
delimeter.

 Save Mode: The Advanced Category Selector can save the Categories in a variety of
ways.

◦ Set Document Categories: If selected, the control will not set the field value, but
will assign Categories to the current document. This can only be used on
Documents/Pages

◦ Set Field's Value with Category Names (Bar Separated): If selected, the control
will set the field's value to the Categories' Field Save Type (discussed later). This
will not assign the document to the categories.

▪ Allow Manual Entry (To Field Only)

 If checked, the user can type in the values instead of using the List/Tree
selector.

https://docs.kentico.com/k10/deploying-websites/exporting-and-importing-sites/importing-a-site-or-objects#Importingasiteorobjects-Re-signingimportedmacroexpressions

◦ Set both Document Categories and Field's Value: A combination of the previous
two, will both set the Field's values to the Categories' Field Save Type, along with
assign the document to the category. Note that if the Document Category changes,
the field value won't change until you go to the form and hit save (the tool will
prioritize the Document Categories over the Field values)

◦ To Joining Table: Save the Object to Category Relationship into a Join Table.

▪ Note: You can use Custom Tables without any customization, but in order to
use Module Classes you must adjust the Form Control's code, discussed in a
later section.

▪ Join Table This Object Foreign Key: The Foreign Key that you will place in
the joining table. This must be a value available to the form, such as
DocumentID/Guid and NodeID/Guid for Documents.

▪ Join Table Name: The Class name of either the Custom Table or Module
Class.

▪ Join Table Left Field Name: The Field name that stores the Object's foreign
key.

▪ Join Table Right Field Name: The Field name that stores the Category’s
foreign key.

▪ Join Table GUID Field Name: If your table has a GUID, you can place the field
name here so a new GUID will be assigned to it upon creating a new row.

▪ Join Table Last Modified Field Name: If your table has a Last Modified field,
you can place the field name here so the current date will be assigned to it upon
creating a new row.

▪ Join Table Code Name Field Name: If your table has a Code Name field, you
can place the field name here so the tool will place a generated code name in
the format of [TableClass]_[ObjectForiegnKey]_[CategoryForeignKey]

▪ Join Table SiteID Field Name: If your table has a Site ID field, you can place
the field name here so the tool will place the current Site ID in it upon creating a
new row.

 Field Save Type: What Category Identifier you wish to use for the value of the control,
or stored in the join table. Your options are Category ID, Category GUID, and
Category Name.

 Where Filter: You can further control which categories are available by setting a
Where condition that will be run against the CMS_Category table.

 Order By: You can determine the order the Categories Display. By default it will just
use the CategoryOrder for Trees, and Category Display Name for lists.

Integrating the Advanced Category Selector with a Custom Module
Class
Custom Module classes are very flexible, and offer the ability to translate one environment's
IDs to another environment's IDs when properly configured. Since IDs are the fastest way to
look up data, joining tables done through these can product fast queries.

However the synchronization on Custom Module Classes is too intrinsic to be able to
generate dynamically, so you must use your own ModuleInfo and ModuleInfoProvider classes

that can be generated through Kentico in order to operate.

Below are the steps to set up a Joining Table with Staging Capabilities.

Set up a Custom Module Class w/ Staging Support

1. Create a Custom Module (Modules → New)

◦ For our example, I set the Module name to “My Custom Module” and Module
Code Name to “MyCustomModule”

2. Go to “Classes” and Create a new Class

◦ For our example, I set the Class Display Name to “My Joining Class”,
Namespace to “MyNamespace” and Class to “MyJoiningClass”

3. Do NOT check “Is M:N,” as this renders the ID column non-auto incrementing
and can throw errors when inserting.

4. Create a field to hold the Object ID (in our case “DocumentID”), set the type to “int”,
make required, and “Reference to” to what it references, in our case “Page”
(“Document” in 8.0)

5. Create a field to hold the Category ID (in our case “CategoryID”), set the type to “int”,
make required, and “Reference to” to what it references, in our case “Content
Category”

6. Additionally, you may define a SiteID (int) with Reference to “Site”, CodeName (text),
GUID, and Last Modified fields.

7. Finish creating your Class (hitting next till done).
8. On the left menu, you should now see “Code,” click it and set any System columns

(Display Name, Code Name, GUID, “Last Modified”, Binary, SiteID) and adjust the
Namespace if you wish. Hit “Generate Code” and lastly hit “Save Code” which will
save the code to your App_Code/Modules folder.

9. Let the site reload.
10. To enable Staging, go to the Info class you generated (example

App_Code/CMSModules/MyCustomModule/MyJoiningClassInfo.cs)
11. Adjust the TypeInfo portion, see documentation for 8.0/8.1/8.2, 9, and 10.
12. Remove the ObjectDependency for the SiteID, it's not needed as as long as the

TypeInfo has the SiteID column set as it's SiteID definition, it handles it. It looks like
this:
1. new ObjectDependency("SiteID", "cms.site", ObjectDependencyEnum.Required),
2. Your new TYPEINFO should look like this:

13. Let the site reload.

https://docs.kentico.com/k82/custom-development/creating-custom-modules/setting-the-type-information-for-module-classes/enabling-export-and-staging-for-the-data-of-classes#Enablingexportandstagingforthedataofclasses-Example-Settingupexportandstagingforacustomclass
https://docs.kentico.com/k9/custom-development/creating-custom-modules/setting-the-type-information-for-module-classes/enabling-export-and-staging-for-the-data-of-classes#Enablingexportandstagingforthedataofclasses-Example-Settingupexportandstagingforacustomclass
https://docs.kentico.com/k10/custom-development/creating-custom-modules/setting-the-type-information-for-module-classes/enabling-export-and-staging-for-the-data-of-classes#Enablingexportandstagingforthedataofclasses-Example-Settingupexportandstagingforacustomclass

Configure the Advanced Category Selector to allow Joining on this Custom Module Class

(Screenshots below instructions to aid you)

1. Open the form control code file
(~/CMSFormControls/Custom/AdvancedCategorySelector/AdvancedCategorySelector.
ascx.cs)

2. Look for the commented out sections in the Form_OnAfterSaveJoinTable method
(search for “// Copy the Below commented”). There are 2, one for Deleting, one for
Saving

3. Uncomment or copy the case sections.
4. Replace the: case “JoiningTest2.PageToCategory” with your Custom Module Classes'

Code Name.
5. Replace the TestModule.PageToCategoryInfoProvider.GetPageToCategories and

TestModule.PageToCategoryInfo with the new classes that were generated in Kentico
(for example MyCustomModule.MyJoiningClassInfoProvider.GetMyJoiningClasses()
and MyCustomModule.MyJoiningClassInfo)

6. Replace the TestModule.PageToCategoryInfo and new
TestModule.PageToCategoryInfo() with the new classes that were generated in
Kentico (for example, MyCustomModule.MyJoiningClassInfo and new
MyCustomModule.MyJoiningClassInfo()). in the Insert section.

It may seem like a lot of work, but you are only editing about 5 lines of code. Now when you
do a join table using that Custom Module Class, it will use it's InfoProvider and Info class to
insert/delete, which will then trigger any Staging tasks and proper bindings.

