
Kentico CMS 6.0 Integration Guide

Kentico CMS 6.0 Integration Guide2

© 2012 Kentico Software

Table of Contents

Introduction 4

.. 4About this guide

Getting started 7

.. 7Related settings

.. 7Integration bus management UI

.. 12Enabling the sample integration connector

Concept 18

.. 18Main idea

.. 18Outgoing tasks (direction from Kentico CMS)

.. 23Incoming tasks (direction into Kentico CMS)

Connectors implementation 27

.. 27Creating a connector class

.. 28Implementation of outbound direction

.. 34Implementation of inbound direction

Advanced scenarios 39

.. 39Creating a custom subscription class

Important types 41

Database model 45

Part

I

Introduction

Kentico CMS 6.0 Integration Guide4

© 2012 Kentico Software

1 Introduction

1.1 About this guide

This guide provides information about the Integration bus module in Kentico CMS. The main idea of the
Integration bus module is to provide developers with the opportunity to integrate Kentico CMS with third
party systems like CRMs or ERPs. The integration means synchronization of objects and documents in
both directions. The data exchange is ensured by so called connectors. A connector is a common .NET
class that needs to be implemented by a developer.

In the Getting started chapter of this guide, you can find basic information that helps you get started
with the module:

Related settings - explains settings related to the Integration bus module that can be adjusted in Site
Manger -> Settings -> Integration -> Integration bus.
Integration bus management UI - provides general information about the module's user interface in
Site Manager -> Administration -> Integration bus.
Enabling the sample integration connector - contains a step-by-step example explaining how to get
the sample integration connector included in Kentico CMS functional.

In the Concept chapter, you can find general information about the concept of the Integration bus
module and the principles on which it is based:

Main idea - provides basic information about the module and about available modes of data transfer.
Outgoing tasks (direction from Kentico CMS) - provides information about synchronization of changes
from Kentico CMS to external systems.
Incoming tasks (direction into Kentico CMS) - provides information about synchronization of changes
from external systems to Kentico CMS.

In the Connectors implementation chapter, you can find in-depth information that you will need when
implementing your integration connectors:

Creating a connector class - describes how to prepare an operational skeleton of the connector class
where the integration methods will be implemented.
Implementation of outbound direction - describes implementation of methods ensuring integration in
the outbound direction (from Kentico CMS).
Implementation of inbound direction - described implementation of methods ensuring integration in
the inbound direction (into Kentico CMS).

In the Advanced scenarios chapter, you can find the following single topic:

Creating a custom subscription class - explains how a custom subscription class for synchronization
of custom outgoing tasks can be created.

Introduction 5

© 2012 Kentico Software

Finally, there are two reference topics at the end of the guide:

Important types - provides information about data types that you will have to work with during your
custom implementation.
Database model - contains a database diagram and explanation of database tables used by the
module.

Part

II

Getting started

Getting started 7

© 2012 Kentico Software

2 Getting started

2.1 Related settings

Settings related to the System integration bus can be adjusted in Site Manager -> Settings ->
Integration -> Integration bus. Here, the following settings can be adjusted:

Enable system integration
bus

Indicates if the Integration bus logs and processes both incoming and
outgoing integration tasks. Logging and processing of incoming and
outgoing tasks can be enabled or disabled separately by means of the
Enable logging of incoming tasks, Enable processing of incoming
tasks, Enable logging of outgoing tasks and Enable processing of
outgoing tasks settings below.

Enable logging of incoming
tasks

Indicates if the Integration bus logs incoming integration tasks received
from external systems. For this to work, the Enable system
integration bus setting above must be enabled as well.

Enable processing on
incoming tasks

Indicates if the Integration bus processes logged incoming integration
tasks received from external systems. For this to work, the Enable
system integration bus setting above must be enabled as well.

Enable logging of outgoing
tasks

Indicates if the Integration bus logs document and object changes made
in the Kentico CMS system as outgoing integration tasks. For this to
work, the Enable system integration bus setting above must be
enabled as well.

Enable processing of
outgoing tasks

Indicates if the Integration bus processes outgoing tasks logged by
document and object changes made in the Kentico CMS system. For
this to work, the Enable system integration bus setting above must
be enabled as well.

2.2 Integration bus management UI

User interface of the System integration bus module is located in Site Manger -> Administration ->
Integration bus. In this part of the user interface, you can manage integration connectors and both
outgoing and incoming integration tasks.

Kentico CMS 6.0 Integration Guide8

© 2012 Kentico Software

Integration connectors management UI

On the Connectors tab, you can see a list of defined integration connectors. An integration connector is
a class which implements functionality for integration with a specific third party system.

New connectors can be defined after clicking the New connector link above the grid. The following
actions are available for each listed connector:

Edit () - redirects you to an interface where properties of the connector can be edited.
Delete () - deletes the connector so that it is no longer defined and available.

Please note that when you add, edit or delete a connector, all defined connectors are be reinitialized.

When creating a new integration connector or editing an existing one, the following properties of the
connector need to be specified:

Display name Name of the connector used in the system's administration interface.

Code name Name of the connector used in website code. This name must match
the value of the ConnectorName property declared in the connector's
class. For more details, see step 1 and 4 in Getting started -> Enabling
the sample integration connector.

Assembly name Name of the assembly within the web project in which the connector's
class resides. A connector can either be implemented in a standard
assembly, or in App_Code.

When it is stored in App_Code, you need to enter App_Code into this
field and implement a module class with code that will ensure dynamic
loading of the connector. For more details, see step 2 in Getting started
-> Enabling the sample integration connector.

Please note that if you installed the project as a web application, you
should use Old_App_Code instead of App_Code.

Class name Name of the class which implements the connector. If the class is
located in a dedicated assembly (not in App_Code), the name should
be entered including the namespace.

Enabled Indicates if logging and processing of tasks by this connector is
enabled. Logging and processing of tasks needs to be enabled in Site
Manger -> Settings -> Integration -> Integration bus as well in order
for the connector to be functional.

Getting started 9

© 2012 Kentico Software

To make sure that a connector is loaded correctly, please see the listing of connectors. When
something goes wrong you are notified by the warning () icon. When you move your mouse over the
icon, you will be provided with a tooltip explaining the most common causes of failure.

Outgoing tasks management UI

On the Outgoing tasks tab, you can see a list of logged outgoing synchronization tasks that were not
processed yet. Outgoing tasks represent changes made in the Kentico CMS system that should be
reflected in the target system with which Kentico CMS is integrated. By default, the tasks are listed from
the oldest to the newest, i.e. in the order in which the will be processed.

Using the Connector drop-down list, you achieve that only tasks logged for the selected connector will
be listed in the grid. When (all) is selected, all outgoing tasks logged for all connectors are displayed.

The following actions are available for each listed task:

View () - displays object or document data transferred within the integration task in a new pop-up
window.
Synchronize () - starts processing of the respective single integration task.

Kentico CMS 6.0 Integration Guide10

© 2012 Kentico Software

Delete () - deletes the integration task without processing it.

In case that there are a large number of tasks listed, you can perform the above mentioned actions with
more of them at once using the two drop-down lists below the grid. Using the first one, you need to
chose whether to perform the action to all listed tasks, or only to the tasks selected by the check-boxes
next to them. Then you need to choose the required action from the second drop-down list and click OK
to perform it. If you perform synchronization of multiple tasks, they are performed in the order in which
they were created, no matter how they are currently sorted in the grid.

Incoming tasks management UI

On the Incoming tasks tab, you can see a list of logged incoming synchronization tasks that were not
processed yet. Incoming tasks represent changes in the external system with which Kentico CMS is
integrated that should be reflected in the Kentico CMS system. By default, the tasks are listed from the
oldest to the newest, i.e. in the order in which the will be processed.

Using the Connector drop-down list, you achieve that only tasks logged for the selected connector will
be listed in the grid. When (all) is selected, all incoming tasks logged for all connectors are displayed.

The following actions are available for each task:

View () - displays document or object data transferred within the integration task in a new pop-up
window.
Synchronize () - starts processing of the respective single integration task.
Delete () - deletes the integration task without processing it.

In case that there are a large number of tasks listed, you can perform the above mentioned actions with
more of them at once using the two drop-down lists below the grid. Using the first one, you need to
chose whether to perform the action to all listed tasks, or only to the tasks selected by the check-boxes
next to them. Then you need to choose the required action from the second drop-down list and click OK
to perform it. If you perform synchronization of multiple tasks, they are performed in the order in which
they were created, no matter how they are currently sorted in the grid.

Getting started 11

© 2012 Kentico Software

Integration task details

After clicking the View () icon on both of the tabs mentioned above, a pop-up window is displayed. In
this window, you can see the object or document data transferred within the integration task.

Failed task processing details

When processing of an integration task fails, the Failed link is displayed in the Result column. If you
mouse-over it, an error message explaining the issue is displayed. In case of outgoing tasks, it is the
error message returned by the respective method implemented in the integration connector.

Kentico CMS 6.0 Integration Guide12

© 2012 Kentico Software

If you click the Failed link, a pop-up window is displayed, containing a Synchronization log with
detailed information about individual attempts to process the synchronization task.

2.3 Enabling the sample integration connector

The default installation of Kentico CMS contains a sample integration connector. Two subscriptions for
outgoing tasks are implemented in this connector — one for synchronization of all user objects, the
second one for synchronization of all documents on all websites in the system. The connector's purpose
is only demonstrational - it does nothing more than that it logs an event in Site Manger ->
Administration -> Event log for each creation, modification or deletion of a user or document.

The following points summarize what needs to be done in order for the connector to be functional. Most
of the steps have already been performed, so they are only described so that you can follow them when
registering your own integration connectors.

1. The connector itself is implemented by the SampleIntegrationConnector.cs class located in ~/
App_Code/Samples/Classes (or Old_App_Code if you installed the project as a web application). Open
the file for editing in Visual Studio. To make it work, you need to ensure that the ConnectorName
property initialized in the Init() method has the same value as the code name of the connector registered
in the UI (see step 4 below for more details). For the purpose of this example, change the value of the
property to "SampleIntegrationConnector".

public class SampleIntegrationConnector : BaseIntegrationConnector

{

 #region "Initialization (subscribing)"

 /// <summary>

Getting started 13

© 2012 Kentico Software

 /// Initialize connector name and register subscriptions.

 /// </summary>

 public override void Init()

 {

 ConnectorName = "SampleIntegrationConnector";

 // Create subscription for all user objects

 ObjectIntegrationSubscription objSubscription = new

ObjectIntegrationSubscription(ConnectorName, TaskProcessTypeEnum.AsyncSnapshot,

TaskTypeEnum.All, null, PredefinedObjectType.USER, null);

 // Create subscription for all documents (on all sites)

 DocumentIntegrationSubscription docSubscription = new

DocumentIntegrationSubscription(ConnectorName, TaskProcessTypeEnum.

AsyncSimpleSnapshot, TaskTypeEnum.All, null, null, null, null);

 // Register earlier created subscriptions for current connector

 SubscribeTo(objSubscription);

 SubscribeTo(docSubscription);

 // Please see implementation of ProcessInternalTaskAsync overloads (and

eventually comments for the rest of the methods)

 }

...

2. A connector can either be implemented in a standard assembly, or in App_Code (or Old_App_Code if
you installed the project as a web application), just as the sample connector. When it is stored in
App_Code, you need to implement a module class with code that will ensure dynamic loading of the
connector. See Customizing providers from App_Code in Kentico CMS Developer's Guide for more
details.

In ~/App_Code/Samples/Modules (or ~/Old_App_Code/Samples/Modules), you can find the
SampleIntegrationModule.cs class, which ensures dynamic loading of the sample integration connector.
You can see its code below.

using CMS.SettingsProvider;

[SampleIntegrationConnectorLoader]

public partial class CMSModuleLoader

{

 public class SampleIntegrationConnectorLoaderAttribute : CMSLoaderAttribute

 {

 /// <summary>

 /// Initializes the module

 /// </summary>

 public override void Init()

 {

 ClassHelper.OnGetCustomClass += GetCustomClass;

 }

 /// <summary>

 /// Gets the custom class object based on the given class name. This

http://devnet.kentico.com/docs/6_0/devguide/custom_providers_app_code.htm

Kentico CMS 6.0 Integration Guide14

© 2012 Kentico Software

handler is called when the assembly name is App_Code.

 /// </summary>

 private static void GetCustomClass(object sender, ClassEventArgs e)

 {

 if (e.Object == null)

 {

 switch (e.ClassName)

 {

 // Load SampleIntegrationConnector

 case "SampleIntegrationConnector":

 e.Object = new SampleIntegrationConnector();

 break;

 }

 }

 }

 }

}

3. In Kentico CMS user interface, integration connectors need to be registered on the Connectors tab
in Site Manager -> Administration -> Integration bus. New connectors can be registered by clicking
the New connector link above the grid.

The Sample Integration Connector is already registered in the default installation and just not
enabled, so let's inspect its properties by clicking the Edit () icon.

4. When editing an integration connector (as well as when registering a new one), the following
properties need to be specified:

Display name - name of the connector used in the system's administration interface.
Code name - name of the connector used in website code. This name must match the value of the
ConnectorName property declared in the connector class (see step 1 above).
Assembly name - name of the assembly within the web project in which the connector class
resides.
Class name - name of the class which implements the connector. If the class is located in a
dedicated assembly (not in App_Code), the name should be entered including the namespace.
Enabled - indicates if logging and processing of tasks by this connector is enabled. Logging and
processing of tasks needs to be enabled in Site Manger -> Settings -> Integration -> Integration bus
as well in order for the connector to be functional.

As the sample integration connector is not enabled by default, check the Enabled check-box and click
OK to save the changes.

Getting started 15

© 2012 Kentico Software

5. Now that the the connector is registered and enabled, you only need to adjust settings of the module.
Go to Site Manger -> Settings -> Integration -> Integration bus and adjust the settings as follows:

Enable system integration bus: enabled
Enable logging of incoming tasks: disabled
Enable processing on incoming tasks: disabled
Enable logging of outgoing tasks: enabled
Enable processing of outgoing tasks: disabled

The sample connector only handles outgoing tasks, so all incoming task settings may stay disabled.
The reason why you should also leave processing of outgoing tasks disabled is only demonstrational —
it will allow you to see the logged tasks in the UI in the following step. If you enabled them, the tasks
would be processed right off and you would only see the logged events in the event log.

6. With the settings adjusted, try creating and modifying some documents and users. After doing so, go
to Site Manager -> Administration -> Integration bus. You should see tasks for the respective
actions logged on the Outgoing tasks tab. As processing of the tasks is disabled by settings, the
Synchronize () action is grayed out and can not be performed at the moment.

7. Now go back to Site Manger -> Settings -> Integration -> Integration bus and enable the Enable
processing of outgoing tasks setting. Then, go back to Site Manager -> Administration ->
Integration bus -> Outgoing tasks. The Synchronize () action should now be enabled. Instead of
clicking the icon for each logged task, you can simply choose All tasks from the first drop-down list
below the grid, choose Synchronize from the second one and click OK.

Kentico CMS 6.0 Integration Guide16

© 2012 Kentico Software

8. Once all tasks are performed, you can go to Site Manger -> Administration -> Event log and see
the events logged by performing the tasks.

Part

III

Concept

Kentico CMS 6.0 Integration Guide18

© 2012 Kentico Software

3 Concept

3.1 Main idea

The main idea of the Integration bus module is to provide developers with the opportunity to integrate
Kentico CMS with third party systems like CRMs or ERPs. The integration means synchronization of
objects and documents in both directions.

The data exchange is ensured by so called connectors. A connector is a common .NET class that
needs to be implemented by a developer. In the Connectors implementation chapter, you can find more
information on how to correctly implement such a connector class.

Data modes (data types)

The connectors are supposed to transfer some data. There are several supported data modes which can
be understood as different amounts/volumes of transferred data. To proceed and understand the
subsequent chapters, it is necessary to know the differences between these modes:

Simple – use it when you are interested only in partial contents of an object (e.g. a text field), i.e.
when you are not planning to synchronize the whole object.
SimpleSnapshot – use this type when you are planning to synchronize whole objects and when you
want to preserve foreign key bindings. This of course applies only when the 3rd party system has
architecture and database design similar to Kentico CMS.
Snapshot – this type is useful when you want to synchronize multiple objects at once. E.g. a main
object with its children, e.g. polls together with poll answers.

3.2 Outgoing tasks (direction from Kentico CMS)

The outbound direction of integration is dependent on so called subscriptions. These allow you to
specify which objects or documents you want to synchronize. When a user or the system itself performs
an operation (such as create, update or delete) that corresponds with a subscription, the system passes
the request to a connector either synchronously or asynchronously (this also depends on settings of the
subscription).

Subscriptions

Subscriptions are used to define a scope over objects and documents. They can be basically
understood as conditions – and when the conditions are met, the object or document is passed to
further processing.

The following diagram illustrates how subscriptions fit into the whole integration process:

Concept 19

© 2012 Kentico Software

More details can be found in Connectors -> Implementation of outbound direction.

Types of processing

Unlike the inbound direction, the outbound direction supports two types of processing — asynchronous
and synchronous.

Asynchronous processing

When you choose to process tasks asynchronously, object or document data are firstly stored in the
database (we say that a task was logged in the tasks queue). Even if the external system is not
currently accessible for some reason, the tasks are logged to a queue, which preserves the order of
performed actions and prevents the synchronization from being lost. The tasks can be reliably processed
once the external system is operative again. Another major advantage of this approach is that you don’t
lose the data of the tasks even if processing fails.

To ensure maximum performance, the logging and processing is postponed till the application reaches
its EndRequest event, as can be seen in the following figure:

Kentico CMS 6.0 Integration Guide20

© 2012 Kentico Software

Asynchronous processing is highly scalable as all time-consuming operations are performed
asynchronously. This approach doesn’t have any major disadvantages and can be used for most
scenarios.

As mentioned above, the processing starts basically on EndRequest. Alternatively, it can be launched
by clicking Synchronize () in Site Manager -> Administration -> Integration bus -> Outgoing tasks.
This can come in handy when the processing was previously turned off in settings or when the
processing failed for some reason that has passed. Please note that processing doesn’t start on
EndRequest when the object or document has been changed in an asynchronous thread (e.g. in New
site wizard when the Log integration tasks option is enabled). This limitation will be hopefully removed
in one of the future versions of Kentico CMS.

When the processing thread starts, the connector starts to fetch tasks from the oldest to the newest (it
is the classic queue principle). A fetched task is transformed to a strongly typed object and passed to

http://devnet.kentico.com/docs/6_0/devguide/new_site_wizard.htm
http://devnet.kentico.com/docs/6_0/devguide/new_site_wizard.htm

Concept 21

© 2012 Kentico Software

the methods implemented by the developer in the connector class. Some additional methods might be
called, e.g. when a foreign key translation is desirable. When the task is processed, no matter whether
successfully or not, the result value (of type IntegrationProcessResultEnum) is returned to notify the
connector. Depending on the result, the connector decides what to do next.

The following scheme illustrates the whole procedure:

Please note that the BaseIntegrationConnector is already implemented. Your job is to prepare a code
based upon this class (in the figure above, it is named CustomIntegrationConnector).

Synchronous processing

When using synchronous processing, the changed object goes directly to the connector for further
processing:

The following diagram illustrates the detailed order of the events:

Kentico CMS 6.0 Integration Guide22

© 2012 Kentico Software

The major advantage of this attitude is that you can manipulate with the object in the context of Kentico
CMS. This means that you can access properties like Parent or Children and the data are fetched from
the database just in time. When it comes to documents, you can access properties like Tags,
Categories and Attachments. On the other hand, you lose the option of persisting object and document
data in the database (for the case when something goes wrong and the connector fails to process the
request). Another disadvantage results from the nature of this type of synchronous processing — it
slows down the page life cycle. It is recommended to use synchronous processing only when it is
necessary for a specific reason.

Processing of synchronous tasks starts immediately after some object or document matching some
subscription is changed. Unlike the asynchronous processing where the logging and processing is
postponed till the application reaches EndRequest, this type of processing sends the data instantly to
the subscribed connectors.

Concept 23

© 2012 Kentico Software

3.3 Incoming tasks (direction into Kentico CMS)

The inbound direction allows you to send data to the Integration bus and reflect them in Kentico CMS.
The system stores the data in a queue, later takes it from the queue and processes it on a regular basis
or on your request. This process is therefore always asynchronous.

Generally, there are two approaches of implementing the inbound direction.

The first one assumes that the connector is placed within the 3rd party system and references DLLs of
Kentico CMS. It also assumes that the Kentico database is accessible from the external system. The
advantage is that even if the Kentico CMS instance is not accessible for some reason, the data of
objects and documents (we call them tasks) are logged to the queue and can be reliably processed later
without losing the synchronization.

Kentico CMS 6.0 Integration Guide24

© 2012 Kentico Software

The second approach assumes that the connector is located within the Kentico CMS instance. The
communication is ensured by a service (web or WCF). The advantage is that there is no need to
reference Kentico CMS DLLs. On the other hand, you have to put an extra effort into implementation of
the service.

Whichever approach you choose, the processing of tasks is always asynchronous. It can be launched
by:

execution of the Process external integration tasks scheduled task.
making a request to a special page.
manually by clicking Synchronize () in Site Manager -> Administration -> Integration bus ->
Incoming tasks.

Your job as a developer is to implement methods that will help the system log correct data to the queue.
That means you have to convert the external object to a corresponding internal object or document and
supply translation information if you want to preserve foreign key bindings:

Concept 25

© 2012 Kentico Software

Scheduled task

In Site manager -> Administration -> Scheduled tasks, you can find a scheduled task called
Process external integration tasks. By default, its execution is planned once a day. Please adjust the
planning according to your needs, while it’s recommended to perform the synchronization at least on an
hourly basis.

You can also use the scheduled task for manual initiation of external tasks processing by clicking
Execute ().

Part

IV

Connectors implementation

Connectors implementation 27

© 2012 Kentico Software

4 Connectors implementation

4.1 Creating a connector class

A connector can be located either in separate assembly or in App_Code (or Old_App_Code if you
installed the project as a web application).

Creating a connector in App_Code

If you decide to create a connector in App_Code (or Old_App_Code), please see the instructions in
Enabling the sample integration connector.

Creating a connector in a separate assembly

If you decide to create a connector in a separate assembly, you need to go through the following steps:

1. Open the Kentico CMS solution in Visual Studio and add new project to it (name it e.g.
CustomIntegrationConnector). This will ensure the connector will have its own DLL assembly.

2. It’s necessary to add references to following namespaces:

CMSSynchronization
SettingsProvider
SynchronizationEngine
TreeEngine

You will also probably utilize the following namespaces:

CMSHelper
DataEngine
GlobalHelper
SiteProvider
WorkflowEngine

3. Add one new class as shown in the figure below. This class has to inherit from
BaseIntegrationConnector.

Kentico CMS 6.0 Integration Guide28

© 2012 Kentico Software

4. Override the Init() method and set the ConnectorName property within this method. The value of the
ConnectorName property should be equal to the connector’s code name defined in the user interface. At
this point, it is also recommended to register the connector in the Kentico CMS system. Registration of
an assembly with a connector class is explained in the Integration bus management UI topic.

5. Build the solution in Visual Studio.

6. Navigate to Site Manager -> Integration bus -> Connectors and verify that the connector has been
loaded successfully (no warning icon () is displayed next to it).

4.2 Implementation of outbound direction

At this point you should be decided:

which objects and documents you want to synchronize
which data type you want to use
whether you want to use the synchronous or the asynchronous mode

Based on this information, you will be able to decide which methods you need to implement. You should
also have an operational skeleton of the connector prepared as described in the Creating a connector
class topic.

Subscribing

After initializing the ConnectorName property, the second thing you have to do within the Init() method is
to create subscriptions. Subscriptions are classes inheriting from AbstractIntegrationSubscription. The
subscription determines the scope of tracked changes to be synchronized. By default, you can use any
of the three prepared subscription classes – BaseIntegrationSubscription, ObjectIntegrationSubscription
and DocumentIntegrationSubscription.

Connectors implementation 29

© 2012 Kentico Software

Later, you will see that it is not always necessary to create subscription objects. These only give you
the highest level of scope specification granularity.

The particular subscription classes provide the following filtering options:

BaseIntegrationSubscription
SiteName – string determining the name of he site which the object or document is bound to, e.g.
CorpSite. You can also use AbstractIntegrationSubscription.GLOBAL_OBJECTS to subscribe only
to global objects.
TaskType – enumeration determining the type of task (create, update, delete, etc.). See Important
types -> Enumerations -> TaskTypeEnum for more details.

ObjectIntegrationSubscription
ObjectType – string determining the type of the object (e.g. cms.user).
ObjectCodeName – string determining the code name of the object (eg. administrator).

DocumentIntegrationSubscription
DocumentNodeAliasPath – string determining the path to the document (e.g. /Home).
DocumentCultureCode – string determining the document’s culture (e.g. en-%).
DocumentClassName – string determining the document's document type (e.g. CMS.MenuItem).

You could notice the usage of the percent character (%) above. It is a wildcard representing 0-n arbitrary
characters. This wildcard can be used within any of the string parameters. In the culture code example
above, it specifies all English cultures (en-US, en-GB, etc.).

If you don’t want to constrain some string field, just leave it null in the constructor. If you don’t want to
constrain the task type, use the value All.

You can either build your own subscription objects and register them, or take advantage of built-in helper
methods which will do the job for you.

1. If you choose the first option, the code should look like the following:

ObjectIntegrationSubscription objSub = new ObjectIntegrationSubscription
(ConnectorName, TaskProcessTypeEnum.AsyncSnapshot, TaskTypeEnum.CreateObject,
"PersonalSite", "poll.poll%", null);

DocumentIntegrationSubscription docSub = new DocumentIntegrationSubscription
(ConnectorName, TaskProcessTypeEnum.AsyncSimpleSnapshot, TaskTypeEnum.All,
"NewSite", "/Home/%", null, null);

SubscribeTo(objSub);
SubscribeTo(docSub);

The objSub subscription in the example above covers objects whose object type starts with poll.poll.
This can be a Poll or a Poll answer. There is also a constraint saying we want to process the object only
when it is created. The subscription also specifies that only objects created on a site whose code name
is equal to PersonalSite should be processed.

The docSub subscription covers all actions with documents on NewSite located under /Home/ in the
content tree.

Kentico CMS 6.0 Integration Guide30

© 2012 Kentico Software

2. If you decide to use prepared methods you can use overloads of following methods:

SubscribeTo
SubscribeToAllDocuments
SubscribeToAllObjects
SubscribeToDocuments
SubscribeToObjects

Please see the IntelliSense tooltips which will help you decide which of the overloaded methods suits
you the best.

SubscribeToObjects(TaskProcessTypeEnum.AsyncSnapshot, PredefinedObjectType.USER);

This example show the easy way of subscribing to changes made to user objects.

Methods to be implemented

The following methods need to be implemented in the connector to ensure synchronization in the
outbound direction:

ProcessInternalTaskAsync - ensures asynchronous processing of objects or documents (depending
on the chosen override).
GetExternalObjectID - used in asynchronous processing for ID translations when synchronized
objects or documents reference objects inheriting from BaseInfo.
GetExternalDocumentID - used in asynchronous processing for ID translations when synchronized
objects or documents reference documents (TreeNode).
ProcessInternalTaskSync - ensures synchronous processing of objects or documents (depending on
the chosen override).

ProcessInternalTaskAsync method

The method has two overrides. The first one is used for asynchronous processing of objects, the second
one for asynchronous processing of documents.

IntegrationProcessResultEnum ProcessInternalTaskAsync(GeneralizedInfo infoObj,
TranslationHelper translations, TaskTypeEnum taskType, TaskDataTypeEnum dataType,
string siteName, out string errorMessage)

IntegrationProcessResultEnum ProcessInternalTaskAsync(TreeNode node,
TranslationHelper translations, TaskTypeEnum taskType, TaskDataTypeEnum dataType,
string siteName, out string errorMessage)

This method is used for asynchronous processing of objects (like users, forums, bad words, etc.) or
documents. If we consider a basic scenario, your task is to transform the GeneralizedInfo or TreeNode
into a corresponding object in the third party system and perform the action specified by TaskTypeEnum
. You also have to take into account the TaskDataTypeEnum and the necessity of performing foreign key
translations.

When you’re done with processing, return the IntegrationProcessResultEnum value and eventually set

Connectors implementation 31

© 2012 Kentico Software

some error message. The error message is visible through the UI.

ProcessInternalTaskSync method

The method has two overrides. The first one is used for synchronous processing of objects, the second
one for synchronous processing of documents.

IntegrationProcessResultEnum ProcessInternalTaskSync(GeneralizedInfo infoObj,
TaskTypeEnum taskType, string siteName, out string errorMessage)

IntegrationProcessResultEnum ProcessInternalTaskSync(TreeNode node, TaskTypeEnum
taskType, string siteName, out string errorMessage)

These two methods work similarly as the asynchronous version ProcessInternalTaskAsync(). The only
difference is that you are not given the opportunity to use the TranslateColumnsToExternal() method for
the foreign key translations. If you want to translate column values, you have to use Kentico CMS API.

The following example shows approximate code used for translation of a node’s parent identifier:

TreeProvider tree = new TreeProvider(CMSContext.CurrentUser);
TreeNode parentNode = DocumentHelper.GetDocument(node.NodeParentID, tree);
Guid parentGuid = parentNode.NodeGUID;
string parentSiteName = parentNode.NodeSiteName;

int newParentId = 0;

// TODO: External code which utilizes parentGuid and parentSiteName to find
corresponding external document and returns its parent identifier (newParentId)

node.NodeParentID = newParentId;

Task processing options

There are several options how processing of a task can be achieved to synchronize the data:

Utilize API of the external system if you add references to its namespaces.
Use CMSConnectionScope and GeneralConnection and perform a query upon the external database.
Push the data to an external endpoint in a format which it is able to consume. This endpoint can be
represented e.g. by a web service existing in the external system.

You can probably think of some other ways, but you should keep in mind that all
ProcessInternalTaskXXX methods have to return the result status so that you are able to determine
whether the processing on the external side succeeded or not. Please see Important types ->
Enumerations -> IntegrationProcessResultEnum for further details.

Translating foreign key values to match the external ones

If you chose to use the SimpleSnapshot or Snapshot data type, you probably did it because you want to
take advantage of the possibility to translate column values. This can be achieved by calling

Kentico CMS 6.0 Integration Guide32

© 2012 Kentico Software

TranslateColumnsToExternal(), which accepts either an object or a document:

TranslateColumnsToExternal(infoObj, translations, <bool processChildren>)

The last parameter says whether you want to translate foreign keys of child objects. For the
SimpleSnapshot data type, you always pass false. This parameter is useful only when you use the
Snapshot data type. E.g. when you are processing an object that does not exist on the target platform
yet, you don’t have enough information to translate foreign keys of child objects and you need to process
the main object first. So the recommended order of events is the following:

1) Call TranslateColumnsToExternal(infoObj, translations, false).
2) Process the main object (save it to database).
3) Call TranslateColumnsToExternal(infoObj, translations, true).
4) Iterate through Children collection of infoObj and process each object.

To ensure the method’s proper functionality, it is necessary to implement one or both of the following
methods:

GetExternalObjectID() – use if synchronized objects or documents reference objects inheriting
from BaseInfo.
GetExternalDocumentID() – use if synchronized objects or documents reference documents (
TreeNode).

GetExternalObjectID method

The method has the following signature:

int GetExternalObjectID(string objectType, string codeName, string siteName,
string parentType, int parentId, int groupId)

The method has to be implemented only when you use TranslateColumnsToExternal() upon an object or
document referencing an object inheriting from BaseInfo. You are given a set of parameters which should
help you to identify the corresponding object in the external system. Once you find it you just return its
identifier (integer value).

Main parameters:

objectType – defines type of object (e.g. “cms.user”), it can match external objects such as “people”
or “members”
codename – this is the main identifier

Additional parameters:

siteName – in case the object belongs to some site, this is its code name
parentType – if the object has any parent, this is its type
parenteId – if the object has any parent, this is its identifier
groupId – if the object belongs to some group, this is its identifier

Connectors implementation 33

© 2012 Kentico Software

GetExternalDocumentID method

The method has the following signature:

int GetExternalDocumentID(Guid nodeGuid, string cultureCode, string siteName, bool
returnDocumentId)

The method has to be implemented only when you use TranslateColumnsToExternal() upon an object or
document referencing a document (TreeNode). You are given a set of parameters which should help you
identify the corresponding document in the external system. Once you find it, you just return its identifier
(integer value).

Parameters:

nodeGuid – guid part of the identifier.
cultureCode – the culture code of the document (e.g. “en-US”).
siteName – document in Kentico CMS is always bound to some site therefore the site code name is
also supplied.
returnDocumentId – determines whether the system requires you to return DocumentID or NodeID
value. NodeID is identifier of document independent on culture while DocumentID identifies specific
culture version of a document. See the table below for more details.

Identifier Alternative identification

Shared document data NodeID nodeGuid & siteName

Culture version of a document DocumentID nodeGuide & siteName &
cultureCode

For more information on how Kentico CMS documents are stored in the database, please refer to
Developer's Guide -> Content management -> Content management internals and API -> Database
tables.

Translation flow diagram

The following figure illustrates how the translation works:

http://devnet.kentico.com/docs/6_0/devguide/documents_api_database_tables.htm
http://devnet.kentico.com/docs/6_0/devguide/documents_api_database_tables.htm

Kentico CMS 6.0 Integration Guide34

© 2012 Kentico Software

4.3 Implementation of inbound direction

At this point you should be decided:

which objects and documents you want to synchronize
which data type you want to use

Based on this information you will be able to decide which methods you need to implement. You should
also have operational skeleton of connector prepared as described in the Creating a connector class
topic.

Implementation basics

To log object or document tasks to the queue, please use the following method located in the
IntegrationHelper class:

void ProcessExternalTask(string connectorName, object obj,
IntegrationProcessTypeEnum result, TaskTypeEnum taskType, TaskDataTypeEnum
dataType, string siteName)

This method just logs the tasks to the queue and the system takes care of them and processes them
later. It has the following parameters:

Connectors implementation 35

© 2012 Kentico Software

connectorName – use code name of the connector for that you want the tasks to be logged.
obj – this will typically be the external object. If you have somehow managed to prepare ICMSObject
earlier, you can pass it as well.
result – this value says how the system should behave when fetching the tasks from the database
and how it should react if an error occurs.
taskType – by providing this value, you say whether the provided object or document should be
created, updated, deleted, etc.
dataType – says whether the provided object contains also child objects, etc. The value also
indicates whether the methods for collecting translation information will be called.
siteName – if the processed object belongs to a site, you should provide a code name of this site.

Detailed description of particular enumerations used in the parameters can be found in Important types -
> Enumerations.

The following diagram illustrates the sequence of method calls for each inbound synchronization. The
purpose and details of individual methods are described further below.

Methods to be implemented

The following methods need to be implemented to ensure synchronization in the inbound direction:

Kentico CMS 6.0 Integration Guide36

© 2012 Kentico Software

PrepareInternalObject - ensures processing of an object or a document.
GetInteralObjectParams - prepares translation information for an object or a document that has a
foreign key to an object (BaseInfo).
GetInternalDocumentParams - prepares translation information for an object or a document that has a
foreign key to a document (TreeNode).

PrepareInternalObject method

The method has the following signature:

ICMSObject PrepareInternalObject(object obj, TaskTypeEnum taskType,
TaskDataTypeEnum dataType, string siteName)

The method serves as a centralized point for transformation of objects and documents from the external
system to the corresponding ones in Kentico CMS. Your task is to return a valid TreeNode or object
inheriting from BaseInfo. The following figure illustrates when the method is called:

GetInernalObjectParams method

The method has the following signature:

Connectors implementation 37

© 2012 Kentico Software

void GetInternalObjectParams(int id, string objectType, out string codeName, out
string siteName, ref int parentId, ref int groupId)

The method needs to be implemented when you are planning to synchronize objects or documents that
have foreign keys referencing objects (in Kentico CMS). Based on the given parameters (id and
objectType), you should be able to find corresponding object in the external system and supply at least
its code name through the corresponding out parameter. It is possible to specify the object more
precisely by providing also siteName, parentId and groupId.

GetInternalDocumentParams method

The method has the following signature:

void GetInternalDocumentParams(int id, string className, out Guid nodeGuid, out
string cultureCode, out string siteName)

The method needs to be implemented when you are planning to synchronize objects or documents that
have foreign keys referencing documents (in Kentico CMS). Based on the given parameters (id and
className), you should be able to find the corresponding document in the external system and supply
its nodeGuid, cultureCode and siteName through the out parameters. All of the parameters are
mandatory.

How to request processing of logged tasks

BaseIntegrationConnector offers you two overloads of the RequestTasksProcessing method:

HttpStatusCode RequestTasksProcessing(string serverUrl)
HttpStatusCode RequestTasksProcessing(string serverUrl, string connectorName)

By calling these methods, the application makes a HTTP request to the ~/CMSPages/IntegrationNotify.
aspx page, which causes that processing is executed. Each connector will be processed in its own
thread. The method requires you to specify a URL leading to the root of the Kentico CMS application (e.
g. http://www.example.com/KenticoCMS). The second overload allows you to specify the connector
whose tasks will be processed. If the parameter is not supplied, all connectors will be processed.

Part

V

Advanced scenarios

Advanced scenarios 39

© 2012 Kentico Software

5 Advanced scenarios

5.1 Creating a custom subscription class

You can create your own subscription class by implementing the IsMatch() method. This can be useful
when you want to extend the options of defining the scope.

The diagram below illustrates inheritance of existing classes:

Choose one and inherit your subscription from it. Now you have to implement an override of the following
method:

bool IsMatch(ICMSObject obj, TaskTypeEnum taskType, ref TaskProcessTypeEnum
taskProcessType);

Your task is to evaluate whether the subscription or more precisely its properties (initialized in
constructor) match the properties of obj and the value of taskType. Once they do, you simply initialize
taskProcessType (which should be also initialized in constructor of subscription) and return true.

Part

VI

Important types

Important types 41

© 2012 Kentico Software

6 Important types

This chapter gives you general overview of data types that you can be confronted with during
implementation.

Classes

BaseInfo - represents any site-related or global data object in Kentico CMS (e.g. a page template or
a poll).

TreeNode - represents a document in Kentico CMS.

Interfaces

ICMSObject - interface identifying BaseInfo or TreeNode.

Enumerations

TaskTypeEnum

This enumeration is located in the CMS.SettingsProvider namespace. It always accompanies a
processed object or document. The value has a slightly different meaning for outgoing and incoming
tasks:

for outgoing tasks, the value is used only to create subscriptions and it says which actions should be
handled. E.g. when you subscribe to CreateObject, the Integration bus will react only when object
inheriting from BaseInfo is created.
for incoming task, it says what should happen with the given object. E.g. when you pass a document
object and task type DeleteDocument, Kentico CMS will delete the document.

The most common values for objects are:

CreateObject
UpdateObject
DeleteObject
AddToSite (not applicable for global objects)
RemoveFromSite (not applicable for global objects)
All - this value gives sense only for outbound direction (during subscribing). It indicates that
integration bus should create tasks whenever change to document or object is made.

The most common values of documents are:

CreateDocument
UpdateDocument
DeleteDocument
PublishDocument
ArchiveDocument
All – this value gives sense only for outbound direction (during subscribing). It indicates that
integration bus should create tasks whenever change to document or object is made.

Kentico CMS 6.0 Integration Guide42

© 2012 Kentico Software

To see the whole list of values, please explore the enumeration in Visual Studio. You can use object
browser if you don’t have source code.

Please note that there is no task type indicating a change of documents' worklow steps (except special
types like PublishDocument or ArchiveDocument). This is one of the known limitations which are likely
to be fixed in one of the future versions.

TaskProcessTypeEnum

Values of this enumeration represent all supported combinations of synchronicity and data modes.
Please note that when the system looks for connectors that have a matching subscription and one
connector has more of them, the system takes the first one according to the following priority (highest to
lowest):

SyncSnapshot
AsyncSnapshot
AsyncSimpleSnapshot
AsyncSimple

As you can notice, there is only one Sync option — SyncSnapshot. This is given by the nature of
synchronous processing where you can always access related objects (parent, children, etc.).

TaskDataTypeEnum

You can notice the usage of TaskDataTypeEnum across whole integration module. This enumeration
gives additional information about the content of the currently synchronized object. For outbound
direction, the value also specifies whether the object is being accompanied with the translation data —
this applies only to asynchronous processing. For inbound direction, it says whether the translations
should be prepared during task logging and whether the system should try to process child objects.
Translation data are data enabling translation of foreign keys between Kentico CMS and the external
system. When using synchronous processing, the required data can be obtained directly within the
context of the application.

There are three options:

Value Object data
Translation data (only

for asynchronous
processing)

Include child objects,
bindings, categories,

etc.

Snapshot

SimpleSnapshot

Simple

Snapshot mode does not support documents

Please note that the Snapshot mode is not supported for synchronization of
documents. This is one of the limitations that will be fixed in one of the future Kentico
CMS versions.

Important types 43

© 2012 Kentico Software

IntegrationProcessResultEnum

This enumeration is used for indicating the result of processing outgoing task by 3rd party applications.
The result determines what happens after processing a single task.

Possible values are:

Value Meaning
Asynchronous

processing
Synchronous
processing

OK Processing succeeded Task (or relation
between task and
connector) is deleted.
Processing continues
with the next task in
queue.

Processing continues
with the next task in
queue.

Error Critical error occurred Error is logged to the
synchronization log.
Processing stops for the
current connector.

Error is logged to event
log. Task data are lost.
Processing stops for all
connectors.

ErrorAndSkip Noncritical error
occurred

Error is logged to the
synchronization log.
Processing continues.

Error is logged to the
event log. Task data are
lost. Processing stops
for the current
connector.

SkipNow Process the task during
next iteration

Processing continues
with the next task in
queue.

Task data are lost.

IntegrationProcessTypeEnum

Values of this enumeration are used during processing of incoming tasks. Generally, it says whether to
process the task immediately or not and how to behave when an error occurs.

Value Meaning

Default Processes the task immediately. If an error occurs, the processing stops
and the type is set to Error.

SkipOnce Does not process the task during the first processing (just sets the type to
Default so it is going to be processed during next processing).

SkipOnError Processes the task immediately. If an error occurs, the task is skipped and
the processing continues.

DeleteOnError Processes the task immediately. If an error occurs, the task is deleted and
the processing continues.

Error Processing should not continue due to a critical error.

Part

VII

Database model

Database model 45

© 2012 Kentico Software

7 Database model

The Integration bus module uses the following database tables:

Integration_Connector – contains definitions of connectors. The system therefore knows which
connectors should be loaded and from which assemblies.
Integration_Task – contains data of outgoing and incoming tasks. It also contains additional
information like TaskDataType or TaskProcessType.
Integration_Synchronization – contains relations between tasks and connectors. For incoming
tasks, there is always one record for each task. For outgoing tasks, there can be multiple records for
each task — this depends on whether there are some connectors with the same subscription. This
design saves database storage capacity.
Integration_SyncLog – contains possible errors. Generally speaking, when task processing fails,
the system stores the error messages here.

	Introduction
	About this guide

	Getting started
	Related settings
	Integration bus management UI
	Enabling the sample integration connector

	Concept
	Main idea
	Outgoing tasks (direction from Kentico CMS)
	Incoming tasks (direction into Kentico CMS)

	Connectors implementation
	Creating a connector class
	Implementation of outbound direction
	Implementation of inbound direction

	Advanced scenarios
	Creating a custom subscription class

	Important types
	Database model

