
Kentico CMS 7.0 Controls

Kentico CMS 7.0 Controls2

© 2014 Kentico Software

Table of Contents

Kentico CMS Controls 8

.. 8Overview

.. 8Configuring your project for Kentico CMS Controls

.. 10Using ASPX page templates

.. 12Transformations

.. 15Controls hierarchy

.. 16Generic Controls

... 16Overview

... 17UniView

... 17Overview

... 17Getting started

... 21Configuration

... 23Appearance and styling

... 27Paging controls

... 27Overview

... 27Paging controls - common properties

... 28DataPager
.. 28Overview

.. 28Getting started

.. 29Configuration

.. 31Appearance and styling

... 32TemplateDataPager
.. 32Overview

.. 32Getting started

.. 35Configuration

.. 35Appearance and styling

... 36UniPager
.. 36Overview

.. 37Getting started

.. 39Configuration

.. 40Structure

.. 42Appearance and styling

.. 43Implementing the IUniPageable interface

.. 46Basic Controls

... 46Overview

... 46Navigation

... 46Overview

... 46BasicTabControl
.. 46Overview

.. 47Getting started

.. 49Configuration

.. 50Appearance and styling

... 50Listings and viewers

... 50Overview

... 51BasicCalendar

3Contents

© 2014 Kentico Software

.. 51Overview

.. 51Getting started

.. 53Configuration

.. 54Appearance and styling

... 54BasicDataGrid
.. 54Overview

.. 55Getting started

.. 56Configuration

.. 57Appearance and styling

... 57BasicDataList
.. 57Overview

.. 58Getting started

.. 60Configuration

.. 61Appearance and styling

... 61BasicRepeater
.. 61Overview

.. 62Getting started

.. 64Configuration

.. 65Appearance and styling

... 65BasicUniView
.. 65Overview

.. 66Getting started

.. 68Configuration

.. 68Appearance and styling

.. 69CMS Controls

... 69Overview

... 69Path specification in controls and web parts

... 70Caching

... 73CMS controls - common properties

... 76Navigation

... 76Overview

... 77Document menu settings

... 79Using the CSSPrefix property

... 80CMS navigation - common properties

... 81CMSBreadCrumbs
.. 81Overview

.. 81Getting started

.. 82Configuration

.. 83Appearance and styling

... 84CMSListMenu
.. 84Overview

.. 84Getting started

.. 85Configuration

.. 87Appearance and styling

... 87General

... 88Creating a horizontal drop-dow n menu using CSS styles

... 89Creating a vertical drop-dow n menu using CSS styles

... 90CMSMenu
.. 90Overview

.. 91Getting started

.. 93Configuration

.. 95Appearance and styling

... 95CMSSiteMap
.. 95Overview

Kentico CMS 7.0 Controls4

© 2014 Kentico Software

.. 96Getting started

.. 97Configuration

.. 98Appearance and styling

... 99CMSTabControl
.. 99Overview

.. 99Getting started

.. 101Configuration

.. 102Appearance and styling

... 102CMSTreeMenu
.. 102Overview

.. 102Getting started

.. 103Configuration

.. 105Appearance and styling

... 107CMSTreeView
.. 107Overview

.. 108Getting started

.. 108Configuration

.. 110Appearance and styling

... 111Listings and viewers

... 111Overview

... 111Standard listings and viewers
.. 111Overview

.. 111Using nested controls

.. 114Displaying related documents

.. 119CMSCalendar

... 119Overview

... 120Getting started

... 121Configuration

... 121Appearance and styling

.. 121CMSDataGrid

... 121Overview

... 122Getting started

... 123Configuration

... 124Appearance and styling

.. 124CMSDataList

... 124Overview

... 125Getting started

... 126Configuration

... 127Appearance and styling

.. 127CMSDocumentValue

... 127Overview

... 127Getting started

... 128Configuration

.. 128CMSRepeater

... 128Overview

... 129Getting started

... 130Configuration

... 131Appearance and styling

.. 131CMSUniView

... 131Overview

... 132Getting started

... 133Configuration

... 137Using hierarchical transformations

... 138Appearance and styling

5Contents

© 2014 Kentico Software

.. 139CMSView er

... 139Overview

... 139Getting started

... 140Configuration

... 140Appearance and styling

... 141Listings and viewers with a custom query
.. 141Overview

.. 141Using control properties to set query clauses

.. 142CMS Custom query - common properties

.. 142QueryDataGrid

... 142Overview

... 143Getting started

... 144Configuration

... 144Appearance and styling

.. 144QueryDataList

... 144Overview

... 145Getting started

... 146Configuration

... 147Appearance and styling

.. 147QueryRepeater

... 147Overview

... 148Getting started

... 149Configuration

... 150Appearance and styling

.. 150QueryUniView

... 150Overview

... 151Getting started

... 152Configuration

... 156Appearance and styling

... 157Edit mode buttons

... 157Overview

... 157CMSEditModeButtonAdd
.. 157Overview

.. 157Getting started

.. 158Configuration

.. 159Appearance and styling

... 159CMSEditModeButtonEditDelete
.. 159Overview

.. 159Getting started

.. 161Configuration

.. 161Appearance and styling

... 161Editable regions for ASPX page templates

... 161Overview

... 162CMSEditableImage
.. 162Overview

.. 163Getting started

.. 163Configuration

... 164CMSEditableRegion
.. 164Overview

.. 164Getting started

.. 165Configuration

.. 166Appearance and styling

... 166CMSPageManager
.. 166Overview

Kentico CMS 7.0 Controls6

© 2014 Kentico Software

.. 167Getting started

.. 167Configuration

.. 169Appearance and styling

... 169Search Controls

... 169Overview

... 170CMSSearchDialog
.. 170Overview

.. 170Getting started

.. 171Configuration

.. 172Structure

.. 173Appearance and styling

... 174CMSSearchResults
.. 174Overview

.. 174Configuration

.. 177Structure

.. 178Appearance and styling

.. 179UI Controls

... 179Overview

... 179UniGrid

... 179Overview

... 179Getting started

... 182Implementing custom functionality

... 185Configuration

... 189UniGrid definition

... 202UniSelector

... 202Overview

... 202Getting started

... 204Configuration

Part

I

Kentico CMS Controls

Kentico CMS 7.0 Controls8

© 2014 Kentico Software

1 Kentico CMS Controls

1.1 Overview

Kentico CMS Controls are standard ASP.NET server controls that can be used in Visual Studio 2005,
2008 or 2010. You can place them in your user control .ascx files that implement custom web parts, on
ASPX page templates and pages that do not use the portal engine. Some of them can also be used
outside of Kentico CMS.

Kentico CMS Controls work on the .NET 3.5 SP1 and 4.0 Frameworks.

Before you start using them, please make sure your project is configured as described in Configuring
your project for Kentico CMS Controls.

As mentioned, ASPX page templates are a common place to use controls. The Using ASPX page
templates topic contains a guide describing how a new page template can be created and prepared to
fully utilize CMS controls.

Many controls use transformations to customize the way they display data. More information about this
can be found in the Transformations topic.

To learn more about the various types and inheritance hierarchy of Kentico CMS controls, please see
the Controls hierarchy topic.

Corporate Site sample website required

The examples found in topics describing individual controls further in this guide assume
that your Kentico CMS database contains data for the sample Corporate Site website.

1.2 Configuring your project for Kentico CMS Controls

Before you start using Kentico CMS Controls in your ASP.NET project, it is recommended to add the
controls to the Toolbox:

1. Open the web project in Visual Studio and edit any ASPX web form or ASCX user control file, for
example Default.aspx under the project root. This is necessary, because the controls will only be offered
in the toolbox when working with ASPX markup.

2. Right-click the Toolbox and choose Add tab from the context menu.

3. Type the name of the new tab (e.g. CMS) and press Enter:

http://devnet.kentico.com/docs/7_0/devguide/developing_web_parts.htm

Kentico CMS Controls 9

© 2014 Kentico Software

4. Right-click the new tab and choose Choose Items... from the context menu.

5. In the Choose Toolbox Items dialog, click Browse and locate the CMS.Controls.dll library in the
Bin folder under your website. Click Open and then click OK.

6. The controls are now added to the Toolbox:

Kentico CMS 7.0 Controls10

© 2014 Kentico Software

7. Now you can easily drag and drop the controls into the content of your web forms or user controls.

1.3 Using ASPX page templates

Placing controls on ASPX page templates is one of their most common uses. For additional information
about page templates, please refer to Developer's Guide -> Development -> Web development overview -
> ASPX page template development.

The following is a step-by-step tutorial showing how a new ASPX page template can be created and
registered in the system.

1. Open your Kentico CMS web project in Visual Studio using File -> Open -> Web Site... in the
menu.

2. Now right-click the CMSTemplates/CorporateSite folder in the Solution Explorer and select Add
New Item.

3. Choose to create a new Web Form (.aspx page) and check the Select master page box. Click
Add.

4. The Select a Master Page dialog appears. Choose a master page file and click OK. You can use
the default ASPX master page in the CMSTemplates/CorporateSite folder named root.master.

http://devnet.kentico.com/docs/7_0/devguide/aspx_page_templates_how_it_works.htm
http://devnet.kentico.com/docs/7_0/devguide/aspx_page_templates_how_it_works.htm

Kentico CMS Controls 11

© 2014 Kentico Software

5. Switch to the Source view of the newly created web form. Add the following line under the <%@
Page %> directive:

<%@ Register Assembly="CMS.Controls" Namespace="CMS.Controls" TagPrefix="cms" %>

You can now add any HTML code inside the <asp:Content> element, including any CMS controls and
their definitions.

6. Switch to the code behind. You need to add a reference to the CMS.UIControls namespace:

[C#]

using CMS.UIControls;

7. The last step is to modify the class from which the page is inherited. Change the following code:

[C#]

public partial class CMSTemplates_CorporateSiteAspx_Example : System.Web.UI.Page

to this:

[C#]

public partial class CMSTemplates_CorporateSiteAspx_Example : TemplatePage

Now the page can be correctly used as a page template in Kentico CMS.

Please keep in mind that the name of the class must be identical to the value of the Inherits attribute of
the <%@ Page %> directive on the ASPX page. This is case sensitive.

Registering the ASPX page as a page template

Now that we have created a new ASPX page, we need to register it in Kentico CMS as a page template
so that it can be used.

8. Sign in to Site Manager (we recommend doing this on the sample Corporate Site when following this
tutorial for the controls in this guide) and go to Development -> Page templates. Select a folder, for
example Corporate Site/Examples, click New template and enter a display and code name.

Click OK. Now use the Select button to choose the .aspx file created in the previous steps located in
the ~/CMSTemplates/CorporateSite folder.

Click Save.

9. Now switch to the Sites tab, assign the page template to the websites where you wish for it to be

Kentico CMS 7.0 Controls12

© 2014 Kentico Software

available using the Add sites button and click OK.

Creating a page based on the new page template

10. Go to Kentico CMS Desk -> Content. Create a New document of type Page (menu item). Enter
a Page name and select the Use existing page template option. Select the page template created in
the previous steps and click Save to create the page.

Now you have a page using an ASPX page template. Any changes made to the source .aspx file will
now be automatically reflected by this page.

1.4 Transformations

Transformations are pieces of code that determine how Kentico CMS documents, or certain parts of
them, are rendered by listing web parts and controls. They take raw data from the Kentico CMS
database and transform it into the form you wish it to appear in. This makes them a crucial tool when
displaying documents and document related data on the pages of your website.

Their functionality is very similar to that of templates used by standard ASP.NET list controls such as
the Repeater, which can be defined within the tags of a control through various ItemTemplate
properties. The main difference is that our transformations are stored separately in the database and can
easily be used repeatedly. They are assigned to web parts or controls through the appropriate
TransformationName properties. The use of transformations is supported by all web parts that display
document data, as well as by those listing controls that are designed to work directly with Kentico CMS
documents, such as those in the CMS Controls -> Listings and viewers section of this guide.

There are several different approaches that can be used to write transformations. You can choose how a
transformation's code should be rendered by setting the appropriate type. The following are available:

ASCX - with this option, the code of the transformation will support ASCX markup, i.e. the same
syntax that you would use to edit a standard web form or user control, including inline code,
embedded controls, standard ASP.NET data binding expressions and special methods designed for
use in transformations. Document fields can be accessed using expressions in format: <%# Eval
("ColumnName") %>

Text/XML - the code will only be processed as basic HTML. This means that any ASCX markup,
such as controls or inline code, will not be functional when the transformation is rendered. You may
use Kentico CMS Macro expressions and methods to insert dynamic values into the content.
Expressions in the following format allow you to easily get the values of the given document's fields:
{%ColumnName%}

HTML - works the same way as the Text/XML option, but editing is done through the WYSIWYG
editor. The rendered output of HTML code will be shown inside the editor.

XSLT - this option can be selected for transformations that use XSL elements to render the data. The
code must be in valid XML format.

Please note that for security reasons, the code of ASCX type transformations may only be edited by
users who have the Edit ASCX code permission for the Design module. This permission can only be
assigned by global administrators.

Since text-based transformations (Text/XML or HTML types) are only processed as basic HTML, they

http://devnet.kentico.com/docs/7_0/devguide/macro_expressions_overview.htm
http://devnet.kentico.com/docs/7_0/devguide/wysiwyg_editor_overview.htm
http://devnet.kentico.com/docs/7_0/devguide/wysiwyg_editor_overview.htm

Kentico CMS Controls 13

© 2014 Kentico Software

cannot be used to compromise the security of the website. Another advantage of these transformation
types is that they do not need to be compiled, which means they may be used and modified even if the
Virtual path provider is not available, such as in a precompiled or medium trust environment.

Transformations are categorized under the document types or custom tables that they are supposed to
display. They can be managed in the Kentico CMS administration interface at Site Manager ->
Development -> Document types or Custom tables -> ... Edit () document type or custom table
... -> Transformations. Some document types do not represent an object but serve only as a container
for transformations and queries.

The sample sites include many transformations for all document types and you can modify them or write
new transformations to suit any of your requirements.

For more information about transformations and document types, please refer to Developer's Guide ->
Development -> Document types and transformations.

Example

The code of an ASCX transformation used to display a list of products could look like this:

http://devnet.kentico.com/docs/7_0/devguide/document_type_overview.htm
http://devnet.kentico.com/docs/7_0/devguide/document_type_overview.htm

Kentico CMS 7.0 Controls14

© 2014 Kentico Software

<div class="ProductPreview">

 <div class="ProductBox">

 <div class="ProductImage">

 <a href="<%# GetDocumentUrl() %>" style="display:block;">

<%# EcommerceFunctions.GetProductImage(Eval("SKUImagePath"), 180, Eval

("SKUName"))%>

 </div>

 <a href="<%# GetDocumentUrl() %>">

 <%# HTMLEncode(ResHelper.LocalizeString(Convert.ToString(Eval

("SKUName")))) %>

 <div class="ProductFooter">

 <div class="productPrice"><%# GetSKUFormattedPrice(true, false) %>

 </div>

 </div>

 </div>

</div>

When this transformation is assigned to a listing control or web part that has products (SKUs) in its data
source, the output code of individual products will contain the values returned by the methods and data
binding expressions, like in the following example:

<div class="ProductPreview">

 <div class="ProductBox">

 <div class="ProductImage">

 <a href="/KenticoCMS/Products/Smartphones/Apple-iPhone-3GS.aspx"

style="display:block;">

<img alt="Apple iPhone 3GS" src="/KenticoCMS/getmetafile/fd486a08-26f7-4bfe-a5f4-

f3fbbf4968e1/iphone_3gs_product.aspx?maxsidesize=180" border="0" />

 </div>

 Apple iPhone 3GS

 <div class="ProductFooter">

 <div class="productPrice">$424.99

 </div>

 </div>

 </div>

</div>

The final output of this product on the website will then look like this:

Kentico CMS Controls 15

© 2014 Kentico Software

Please note

The CSS stylesheet used by the page is applied to the output of the transformation.
This example uses the classes from the default Corporate Site stylesheet.

1.5 Controls hierarchy

Kentico CMS Controls make use of the object-oriented nature of the .NET Framework and many of them
are derived either from standard ASP.NET controls or from each other. This means that controls with
similar functionality have many common properties and learning to use them is made easier due to this
fact.

The following categories and controls are available:

Generic Controls - these controls either serve as base controls that others are derived from or
provide additional functionality, such as paging

UniView
Paging controls

DataPager
TemplateDataPager
UniPager

Basic Controls - these controls do not use the Kentico CMS database or API and can be used with
any type of bindable data; most of them are derived from either intrinsic ASP.NET control or Generic
controls

Navigation
BasicTabControl

Listings and viewers
BasicCalendar
BasicDataGrid

Kentico CMS 7.0 Controls16

© 2014 Kentico Software

BasicDataList
BasicRepeater
BasicUniView

CMS Controls - these controls are designed to work exclusively with Kentico CMS documents and
data; many of them are derived from Basic Controls with similar fundamental functionality

Navigation
CMSBreadCrumbs
CMSListMenu
CMSMenu
CMSSiteMap
CMSTabControl
CMSTreeMenu
CMSTreeView

Listings and viewers
Standard listings and viewers

CMSCalendar
CMSDataGrid
CMSDataList
CMSDocumentValue
CMSRepeater
CMSUniView
CMSViewer

Listings and viewers with a custom query
QueryDataGrid
QueryDataList
QueryRepeater
QueryUniView

Edit mode buttons
CMSEditModeButtonAdd
CMSEditModeButtonEditDelete

Editable regions for ASPX page templates
CMSEditableImage
CMSEditableRegion
CMSPageManager

Search controls
CMSSearchDialog
CMSSearchResults

UI Controls - these controls are different from the others; they are user controls that are utilized in
the interface of Kentico CMS, but can also be used for custom purposes

UniGrid
UniSelector

1.6 Generic Controls

1.6.1 Overview

The controls in this section have various functionality, and often serve as base controls that others are
derived from or provide additional functionality, such as paging.

Available controls:

Kentico CMS Controls 17

© 2014 Kentico Software

UniView
Paging controls

1.6.2 UniView

1.6.2.1 Overview

The UniView control is a universal templated data viewer with support for the displaying of hierarchical
data from grouped data sources.

Grouped data sources

Grouped data sources are represented by the GroupedDataSource class, which takes
a standard data source, such as a DataSet, and categorizes the data items into groups
according to the value of a specified column. It can also determine the hierarchical level
of data items depending on the value of a given column.

An example of using this class with the UniView control can be found in the following
topic.

UniView can be used with any bindable data source - it doesn't use Kentico CMS database or API.

Please note

If you want to display documents from Kentico CMS, please use the CMSUniView
control that provides a more convenient way.

The following topics are available to help you familiarize yourself with the UniView control:

Getting started - contains a step-by-step tutorial that allows you to learn the basics of using the
control
Configuration - describes and explains the properties that can be set for the control
Appearance and styling - describes how the design of the control can be modified

1.6.2.2 Getting started

The following is a step-by-step tutorial that will show you how to display all pages (CMS.MenuItem
documents) from the sample Corporate Site using the UniView control:

1. Create a new Web form somewhere in your website installation directory.

2. Switch to its Design tab, drag and drop the UniView control from the toolbox onto the form.

3. Add the code marked by the UniView templates comments between the <cms:UniView> tags. The
overall code of the UniView control should look like this:

Kentico CMS 7.0 Controls18

© 2014 Kentico Software

<cms:UniView ID="UniView1" runat="server">

<%-- UniView templates

--- --%>

<ItemTemplate>

 <%# HTMLHelper.HTMLEncode(Convert.ToString(Eval("NodeAliasPath"))) %

>

</ItemTemplate>

<AlternatingItemTemplate>

 <%# HTMLHelper.HTMLEncode(Convert.ToString

(Eval("NodeAliasPath"))) %>

</AlternatingItemTemplate>

<SeparatorTemplate>

</SeparatorTemplate>

<HeaderTemplate>

</HeaderTemplate>

<FooterTemplate>

</FooterTemplate>

<%-- UniView templates

-- --%>

</cms:UniView>

This sets the templates used when displaying the menu items. The control dynamically replaces the <%
... %> tags with values of the currently displayed record. This is then repeated for every record in the
data source.

4. Add the following references to the beginning of the web form code-behind:

[C#]

using System.Data;

using CMS.CMSHelper;

using CMS.GlobalHelper;

5. Now add the following code to the Page_Load method:

[C#]

//Create DataSet containing all menu item documents in the system

Kentico CMS Controls 19

© 2014 Kentico Software

DataSet ds = TreeHelper.SelectNodes("/%", false, "CMS.MenuItem", "", "NodeLevel,

NodeOrder", -1, true);

 //Check that the DataSet isn't empty

 if (!DataHelper.DataSourceIsEmpty(ds))

 {

 //Bind the DataSet to the UniView control

 this.UniView1.DataSource = ds;

 this.UniView1.DataBind();

 }

This code reads documents from the database and provides them to the UniView control as a DataSet.

6. Save the changes to the web form and its code behind file. Now right-click it in the Solution explorer
and select View in Browser. The resulting page should look like this:

As you can see, this displays all page (menu item) documents in the system, but a flat list is far from
ideal for such a purpose. The following steps will show you how to modify the code to display a
hierarchical structure.

7. Add another reference to the beginning of the web form code-behind:

[C#]

using CMS.SettingsProvider;

8. Modify the code of the Page_Load method to look like this:

[C#]

//Create DataSet containing all menu item documents in the system

Kentico CMS 7.0 Controls20

© 2014 Kentico Software

DataSet ds = TreeHelper.SelectNodes("/%", false, "CMS.MenuItem", "", "NodeLevel,

NodeOrder", -1, true);

 //Check that the DataSet isn't empty

 if (!DataHelper.DataSourceIsEmpty(ds))

 {

 //Create GroupedDataSource from the ds DataSet

 GroupedDataSource gpd = new GroupedDataSource(ds, "NodeParentID",

"NodeLevel");

 //Set RelationColumnID property of the UniView control

 this.UniView1.RelationColumnID = "NodeID";

 //Bind the DataSet to the UniView control

 this.UniView1.DataSource = gpd;

 this.UniView1.DataBind();

 }

This code takes the DataSet containing the documents, groups them according to the NodeID of their
parent document and determines their level in the hierarchy according to their NodeLevel.

9. Save the changes and refresh the page in your browser. It should now look like this:

Kentico CMS Controls 21

© 2014 Kentico Software

1.6.2.3 Configuration

The following properties of the UniView control can be set or used in the API:

Property Name Description Sample Value

AlternatingRange Indicates how often the
AlternatingItemTemplate should be used.

AlternatingStartPosition Indicates the item number from which the
AlternatingItemTemplate should start
being used.

DataSource The object from which the list of data items
is retrieved.

HideHeaderAndFooterF
orSingleItem

Indicates whether the content of the
HeaderTemplate and FooterTemplate
should be hidden if only a single item is
displayed.

HierarchicalDisplayMod
e

Sets the hierarchical display mode. Inner
generates sub-levels inside the level above,

"Inner"
"Separate"

Kentico CMS 7.0 Controls22

© 2014 Kentico Software

Separate generates sub-levels outside of the
upper levels.

OuterData Data generated in the HeaderTemplate and
FooterTemplate.

PagerDataItem Gets or sets the pager data item object.

PagerForceNumberOfR
esults

If set, the DataSet containing paged items is
not modified by the pager, but the pager
itself behaves as if the amount of paged
items were identical to this value. The value
must be set to -1 for the property to be
disabled.

RelationColumnID The name of the column that specifies the
value of the current hierarchy level of items.

"NodeID"

SelectedItemColumnNa
me

The name of the column that should be used
for to find out which item is currently
selected.

"DocumentID"

SelectedItemValue The item whose column specified by the
SelectedItemColumn property matches
the value of this property will be designated
as the currently selected item.

Typically, you will need to insert a Macro
expression in order to dynamically retrieve
the appropriate value from the current
context.

"{%
currentpageinfo.documentid
%}"

Transformations Allows you to assign a
HierarchicalTransformations object
representing a hierarchical transformation.
The UniView renders the source data
according to the hierarchical transformation
(instead of the ItemTemplates).

Note: To use a hierarchical transformation,
you need to set the Transformations property
before calling the UniView's DataBind
method.

You can find an example in Appearance and
styling.

UseNearestItemForHea
derAndFooter

Indicates whether the control provides data
to the item templates (or transformations)
that display the header and footer content.
You can work with the data inside the code
of the templates.

Header templates use the data of the first
item on the given hierarchy level.

http://devnet.kentico.com/docs/7_0/devguide/macro_expressions_Overview.htm
http://devnet.kentico.com/docs/7_0/devguide/macro_expressions_Overview.htm
http://devnet.kentico.com/docs/7_0/devguide/hierarchical_transformations.htm

Kentico CMS Controls 23

© 2014 Kentico Software

Footer templates use the data of the last
item on the given hierarchy level.

The control ignores this property if the
OuterData property is set.

1.6.2.4 Appearance and styling

You can use two different approaches to define the output format of the UniView control:

Item templates
A hierarchical transformation assigned through the Transformations property in the API

You can define the following item templates within the UniView tags:

Template Name Description Sample Value

AlternatingItemTemplat
e

Template used for alternating items.

 <
%# HTMLHelper.HTMLEncode
(Convert.ToString(Eval
("NodeAliasPath"))) %>

FirstItemTemplate Template for the first item on every level in
the hierarchy. Only applied to levels that
contain more than one item.

FooterTemplate Template rendered at the end of every level
(after the last item on the level). Can be used
to close encapsulating elements from the
HeaderTemplate.

HeaderTemplate Template rendered at the beginning of every
level (before the first item on the level).
Allows you to visually separate or style
individual levels.

ItemTemplate Template used for all standard items, that
are not covered by a specialized template
(e.g. alternating items, first items).

<%#
HTMLHelper.HTMLEncode
(Convert.ToString(Eval
("NodeAliasPath"))) %>

LastItemTemplate Template for the last item on every level in
the hierarchy. Only applied to levels that
contain more than one item.

SeparatorTemplate Template rendered between items on the
same level. The UniView does not place the
separator between items on different
hierarchy levels (i.e. between a parent item
and its child).

SingleItemTemplate Template applied in cases where there is
only one item on a level in the hierarchy.

http://devnet.kentico.com/docs/7_0/devguide/hierarchical_transformations.htm

Kentico CMS 7.0 Controls24

© 2014 Kentico Software

Displaying data using hierarchical transformations

The following example demonstrates how to use hierarchical transformations with the UniView control.
The sample scenario displays a hierarchy of forum posts from the Kentico CMS database, based on the
forum thread structure. You can use the same approach for any type of hierarchical data.

Tip

The CMSUniView and QueryUniView controls allow you to use hierarchical
transformations without writing custom code. However, the CMS controls can only
display documents or other hierarchical Kentico CMS data.

The approach described below is primarily intended for displaying:

External hierarchical data
Customized or composite Kentico CMS data sources

1. Create a new Web form in your web project.

2. Add the UniView control onto the form:

<cms:UniView ID="UniViewForumPosts" runat="server" />

3. Switch to the web form's code behind file and add the following references:

using System.Data;

using CMS.Forums;

using CMS.Controls;

using CMS.GlobalHelper;

using CMS.SettingsProvider;

using CMS.PortalEngine;

4. Set up the UniView control in the web form's Page_Load method:

protected void Page_Load(object sender, EventArgs e)

{

 // Loads a DataSet containing all forum posts, ordered according to the

PostLevel and PostTime

 DataSet forumPosts = ForumPostInfoProvider.GetForumPosts("", "PostLevel,

PostTime", -1, "PostID, PostForumID, PostParentID, PostIDPath, PostLevel,

PostSubject, PostText, PostTime");

 // Checks that the DataSet isn't empty

 if (!DataHelper.DataSourceIsEmpty(forumPosts))

 {

Kentico CMS Controls 25

© 2014 Kentico Software

 // Creates a GroupedDataSource from the forumPosts DataSet

 GroupedDataSource groupedForumPosts = new GroupedDataSource(forumPosts,

"PostParentID", "PostLevel");

 // Assigns the grouped data source to the UniView

 UniViewForumPosts.DataSource = groupedForumPosts;

 // Sets the display mode of the UniView

 UniViewForumPosts.HierarchicalDisplayMode =

HierarchicalDisplayModeEnum.Inner;

 // Specifies the column that the data uses as an identifier (to determine

parent-child relationships)

 UniViewForumPosts.RelationColumnID = "PostID";

 // Gets the hierarchical transformation from the system

 TransformationInfo ti = TransformationInfoProvider.GetTransformation

("CMS.Root.ForumPosts");

 // Checks that the transformation exists

 if (ti != null)

 {

 // Checks that the transformation is hierarchical

 if (ti.TransformationIsHierarchical)

 {

 // Stores the structure of the hierarchical transformation into a

HierarchicalTransformations object

 HierarchicalTransformations transformation = new

HierarchicalTransformations("PostID");

 transformation.LoadFromXML

(ti.TransformationHierarchicalXMLDocument);

 // Assigns the hierarchical transformation to the UniView control

 UniViewForumPosts.Transformations = transformation;

 }

 }

 // Binds the UniView's data

 UniViewForumPosts.DataBind();

 }

}

5. Save the changes to the web form and its code behind file.

6. Define the hierarchical transformation in Kentico CMS (named CMS.Root.ForumPosts).

a. Go to Site Manager -> Development -> Document types.
b. Edit the Root document type.
c. Add a hierarchical transformation named ForumPosts on the Transformations tab.
d. Add 4 sub-transformations:

Transformation type: Item transformation
Document types: All (empty)
Level: 0
ASCX transformation code:

http://devnet.kentico.com/docs/7_0/devguide/hierarchical_transformations.htm
http://devnet.kentico.com/docs/7_0/devguide/hierarchical_transformations.htm

Kentico CMS 7.0 Controls26

© 2014 Kentico Software

<div style="background-color:#FFFBE8;">

 <a href="<%# ForumFunctions.GetPostURL(Eval("PostIDPath"), Eval("PostForumID"))

%>">

 <%# Eval("PostSubject", true) %>

 <p>

 <%# HTMLEncode(LimitLength(StripTags(RemoveDynamicControls

(RemoveDiscussionMacros(Eval("PostText")))), 400)) %> </p>

</div>

Transformation type: Item transformation
Document types: All (empty)
Level: 1
ASCX transformation code:

<div>

 <a href="<%# ForumFunctions.GetPostURL(Eval("PostIDPath"), Eval("PostForumID"))

%>">

 <%# Eval("PostSubject", true) %>

 <p>

 <%# HTMLEncode(LimitLength(StripTags(RemoveDynamicControls

(RemoveDiscussionMacros(Eval("PostText")))), 400)) %> </p>

</div>

Transformation type: Header transformation
Level: All (-1)
ASCX transformation code:

<div style="margin-left:30px">

Transformation type: Footer transformation
Level: All (-1)
ASCX transformation code:

</div>

7. Return to Visual Studio, right-click the web form in the Solution explorer and select View in
Browser.

The page displays the forum posts according to the hierarchical transformation:

Kentico CMS Controls 27

© 2014 Kentico Software

1.6.3 Paging controls

1.6.3.1 Overview

The controls in this section provide paging support to other controls that display data. This means they
divide the displayed items into groups (pages) and provide an easy way to navigate between them.

The newest, most flexible and easiest to use is the UniPager control. It provides most of the functionality
of the other two and more, so we recommend using it whenever possible.

Available controls:

DataPager
TemplateDataPager
UniPager

1.6.3.2 Paging controls - common properties

All of the pager controls have the following properties in common:

Property Name Description Sample Value

CurrentPage The current page number.

MaxPages Maximum number of pages that can be
viewed.

Kentico CMS 7.0 Controls28

© 2014 Kentico Software

PageCount The current number of pages (read only).

PageSize The number of displayed items per page.

1.6.3.3 DataPager

1.6.3.3.1 Overview

The DataPager control can ensure paging for the following CMSControls:

CMSDataList
CMSRepeater
CMSSearchResults
QueryDataList
QueryRepeater

This control doesn't need to be used separately, it is built into the above controls and can be enabled or
disabled by using their EnablePaging property.

See also: TemplateDataPager - this is a paging control that can be used to customize the data paging
format

Please note

If possible, we recommend that you use the newer UniPager control instead.

The following topics are available to help you familiarize yourself with the DataPager control:

Getting started - contains a quick step-by-step tutorial that allows you to learn the basics of using
the control
Configuration - describes and explains the properties that can be set for the control
Appearance and styling - describes and explains additional properties that can be used to customize
the appearance of the control

1.6.3.3.2 Getting started

The following is a step-by-step tutorial that will show you how use the DataPager control with a
CMSRepeater control that displays all pages (menu items) in the system:

1. Create a new Web form somewhere in your website installation directory.

2. Switch to its Design tab, drag and drop a CMSRepeater control from the toolbox onto the form and
set its following properties:

ClassNames: cms.menuitem
EnablePaging: True

This tells the control which document types to read and enables the DataPager.

3. Switch to the Source tab and add the code marked by the CMSRepeater templates comments

Kentico CMS Controls 29

© 2014 Kentico Software

between the <cms:CMSRepeater> tags. The overall code of the CMSRepeater control should look like
this:

<cms:CMSRepeater ID="CMSRepeater1" runat="server" ClassNames="cms.menuitem"

EnablePaging="true" >

<%-- CMSRepeater templates

-- --%>

<ItemTemplate>

 <%# HTMLHelper.HTMLEncode(Convert.ToString(Eval("NodeAliasPath"))) %

>

</ItemTemplate>

<AlternatingItemTemplate>

 <%# HTMLHelper.HTMLEncode(Convert.ToString

(Eval("NodeAliasPath"))) %>

</AlternatingItemTemplate>

<SeparatorTemplate>

</SeparatorTemplate>

<%-- CMSRepeater templates

-- --%>

</cms:CMSRepeater>

This sets the templates used by the CMSRepeater to display the pages (menu items). The control
dynamically replaces the <%# ... %> tags with values of the currently displayed record. This is then
repeated for every record in the data source.

6. Save the changes to the web form. Now right-click it in the Solution explorer and select View in
Browser. The resulting page should look like this:

1.6.3.3.3 Configuration

The properties of the DataPager control can be accessed through the PagerControl property of the
paged controls, like for example:

[C#]

Kentico CMS 7.0 Controls30

© 2014 Kentico Software

CMSRepeater1.PagerControl.BackText = "<-";

In addition to the properties from Paging controls - common properties, the following properties can be
set in your code behind files:

Property Name Description Sample Value

DataSource
Can be used to access the object of the
pager's data source.

BackNextDisplay Back/Next display mode. "Buttons"
"Hyperlinks"

BackNextLocation Back/Next location. "Right"
"Left"
"Split"
"None"

BackText Back button/hyperlink text.

FirstText First button/hyperlink text.

HideOnSinglePage If true, the pager is hidden if only one page is
displayed.

IgnoreQueryString Indicates whether querystring parameters
should be ignored.

InsertKeys Adds keys to the querystring.

InsertToUrl Indicates whether inserting querystring keys
is enabled.

LabelText Label text.

LastText Last text.

NextText Next button/hyperlink text.

PagedData Gets the data to be paged.

PageNumbersDisplay Page numbers display mode. "Numbers"
"Results"

PagerPosition The position of the pager relative to the
paged data.

"Bottom"
"Top"
"TopAndBottom"

PagingMode Determines the type of the used paging
parameter. It can either be passed through
the URL (QueryString) or through postback
(PostBack).

PostBack
QueryString

QueryStringKey Query parameter name for the page index. "pagenumber"

RecordEnd Index of the last record on the current page.

RecordStart Index of the first record on the current page.

Kentico CMS Controls 31

© 2014 Kentico Software

RemoveFromUrl Indicates whether removing querystring keys
is enabled.

RemoveKeys Removes keys from the querystring.

ResultsFormat Results text format. "Displaying results {0}-{1} (of
{2})"

ResultsLocation Results location. "Top"
"Bottom"
"None"

ShowFirstLast Indicates whether first/last buttons should be
displayed.

ShowLabel Indicates whether labels should be
displayed.

ShowPageNumbers Indicates whether page numbers should be
displayed.

SliderSize Slider size.

TotalRecords Total amount of data source records.

UseSlider Indicates whether the slider should be used.

1.6.3.3.4 Appearance and styling

The appearance of the DataPager control can additionally be modified by its following properties and the
CSS classes that they specify:

Property Name Description Sample Value

BackNextButtonStyle Back/Next button style.

BackNextLinkSeparator Back/Next link separator.

BackNextStyle Back/Next style.

ControlCssClass CSS class of the pager control.

LabelStyle Label style.

PageNumbersStyle Page numbers style.

PageNumbersSeparator Page numbers separator. ","

PagerControlStyle Pager control style.

PagerHTMLAfter HTML code to be rendered after the pager.

PagerHTMLBefore HTML code to be rendered before the pager.

PagerNumberAreaClass CSS class of the number area.

ResultsStyle Results style.

SectionPadding Section padding.

Kentico CMS 7.0 Controls32

© 2014 Kentico Software

SelectedClass CSS class of the selected page.

UnselectedClass CSS class of unselected pages.

1.6.3.4 TemplateDataPager

1.6.3.4.1 Overview

The TemplateDataPager control can be used to set a custom format for data paging. It can work with the
same controls as the DataPager. It automatically renders the list of numbers, but some code needs to
be written to bind it to a control that ensures the displaying of content (e.g. CMSRepeater, CMSDataList
or other).

Please note

We recommend that you use the newer UniPager control, which can also be customized
and is much easier to use, instead.

The following topics are available to help you familiarize yourself with the TemplateDataPager control:

Getting started - contains a step-by-step tutorial that allows you to learn how to use the control
Configuration - describes and explains the properties that can be set for the control
Appearance and styling - describes how the design of the control can be modified

1.6.3.4.2 Getting started

The following is a step-by-step tutorial that will show you how to add a custom pager to a CMSRepeater
control that displays Smartphones (CMS.Smartphone documents) using the TemplateDataPager control:

1. Create a new Web form somewhere in your website installation directory.

2. Now add the following code to the page, inside the <form> element:

<ajaxToolkit:ToolkitScriptManager ID="manScript" runat="server"

EnableViewState="false" />

<table style="border: solid 1px #CCCCCC; margin-left: auto; margin-right: auto;">

 <tr>

 <td style="border-bottom: solid 1px #CCCCCC; padding: 10px; text-align:

center;">

 <cms:CMSRepeater ID="CMSRepeater1" runat="server" Path="/%"

ClassNames="CMS.Smartphone"

 TransformationName="Ecommerce.Transformations.Product_Default">

 </cms:CMSRepeater>

 </td>

 </tr>

 <tr>

 <td style="padding: 10px; background-color: #D9D9D9;">

 <cms:TemplateDataPager ID="TemplateDataPager1" runat="server">

 <NumberTemplate>

 <a href="?Page=<%# Eval("PageNumber") %>">

Kentico CMS Controls 33

© 2014 Kentico Software

 <%# Eval("PageNumber") %>

 </NumberTemplate>

 <SelectedNumberTemplate>

 <%# Eval("PageNumber") %>

 </SelectedNumberTemplate>

 <SeparatorTemplate>

 -

 </SeparatorTemplate>

 <FirstItemTemplate>

 First |

 </FirstItemTemplate>

 <LastItemTemplate>

 | <a href="?Page=<%# pageCount %>">Last

 </LastItemTemplate>

 <PreviousItemTemplate>

 <a href="?Page=<%# previousPage %>">Previous |

 </PreviousItemTemplate>

 <NextItemTemplate>

 | <a href="?Page=<%# nextPage %>">Next

 </NextItemTemplate>

 </cms:TemplateDataPager>

 </td>

</tr>

</table>

As you can see, the control uses a standard CMSRepeater control to display data. The pager format is
specified using the templates defined between the tags of the <cms: TemplateDataPager> element.

The ToolkitScriptManager control included at the top is required by the transformation used to display
smartphone documents. It is only there to ensure that the example is functional by itself and will usually
be included on your website's master page.

3. Modify the code-behind so that it looks like this (the class name and type may be different):

[C#]

using CMS.GlobalHelper;

public partial class CMSControlsExamples_TemplateDataPager : System.Web.UI.Page

{

 public string pageCount = "1";

 public string previousPage = "1";

 public string nextPage = "";

 /// <summary>

 /// OnInit override

 /// </summary>

 /// <param name="e"></param>

 protected override void OnInit(EventArgs e)

 {

 // Disable repeater pager and databindbydefault

Kentico CMS 7.0 Controls34

© 2014 Kentico Software

 CMSRepeater1.EnablePaging = false;

 CMSRepeater1.DataBindByDefault = false;

 base.OnInit(e);

 }

 protected void Page_Load(object sender, EventArgs e)

 {

 // Get repeater datasource

 TemplateDataPager1.DataSource = CMSRepeater1.DataSource;

 // Set page size

 TemplateDataPager1.PageSize = 1;

 // Set current page from query string

 TemplateDataPager1.CurrentPage = ValidationHelper.GetInteger

(Request.QueryString["Page"], 1);

 // Get page number for last link

 pageCount = ((int)(TemplateDataPager1.PageCount - 1)).ToString();

 // Set default next page link

 nextPage = pageCount;

 // Set previous link

 if ((TemplateDataPager1.CurrentPage - 1) >= 1)

 {

 previousPage = ((int)(TemplateDataPager1.CurrentPage - 1)).ToString();

 }

 // Set next link

 if ((TemplateDataPager1.CurrentPage + 1) <= (TemplateDataPager1.PageCount

- 1))

 {

 nextPage = ((int)(TemplateDataPager1.CurrentPage + 1)).ToString();

 }

 // Set paged datasource to the repeater and databind it

 CMSRepeater1.DataSource = TemplateDataPager1.PagedData;

 if (!DataHelper.DataSourceIsEmpty(CMSRepeater1.DataSource))

 {

 CMSRepeater1.DataBind();

 }

 }

}

This code binds the TemplateDataPager to the CMSRepeater.

4. Save the changes to the web form. Now right-click it in the Solution explorer and select View in
Browser. The resulting page should look like this:

Kentico CMS Controls 35

© 2014 Kentico Software

1.6.3.4.3 Configuration

In addition to the properties from Paging controls - common properties, the following properties of the
TemplateDataPager control can be set or used in the API:

Property Name Description Sample Value

DataSource
Can be used to access the object of the
pager's data source.

NumberRepeater Gets the repeater control used to display
page numbers.

PagedData Gets the data to be paged.

PagerPosition The position of the pager relative to the
paged data.

"Bottom"
"Top"
"TopAndBottom"

PagingMode Determines the type of the used paging
parameter. It can either be passed through
the URL (QueryString) or through postback
(PostBack).

"PostBack"
"QueryString"

RecordEnd Index of the last record on the current page.

RecordStart Index of the first record on the current page.

TotalRecords Total amount of data source records.

1.6.3.4.4 Appearance and styling

The appearance of the TemplateDataPager control is determined by the code in its templates. The
following are available:

Template Name Description Sample Value

FirstItemTemplate Code of the template used for the link to the
first page in the pager.

<a href="?
Page=1">First |

Kentico CMS 7.0 Controls36

© 2014 Kentico Software

LastItemTemplate Code of the template used for the link to the
last page in the pager.

 | <a href="?
Page=<%# pageCount %
>">Last

NextItemTemplate Code of the template used for the link to the
next page.

 | <a href="?
Page=<%# nextPage %
>">Next

NumberTemplate Code of the template used for page links in
the pager. Use <%# Eval("PageNumber") %
> to get the current page number.

<a href="?Page=<%# Eval
("PageNumber") %>">
<%# Eval("PageNumber")
%>

PreviousitemTemplate Code of the template used for the link to the
previous page.

<a href="?Page=<%#
previousPage %
>">Previous |

SelectedNumberTempla
te

Code of the template used for the number of
the currently selected page.

<%# Eval("PageNumber")
%>

SeparatorTemplate Code of the template used for the separator
between page links in the pager.

-

1.6.3.5 UniPager

1.6.3.5.1 Overview

The UniPager is a universal paging control that can ensure paging for any control that implements the
IUniPageable interface. This includes the following Basic and Generic controls:

BasicDataList
BasicRepeater
BasicUniView
UniView

As well as the following CMS controls:

CMSDataList
CMSRepeater
QueryDataList
QueryRepeater

In cases where the UniPager control is placed after the attached listing control, that control must bind its
data later in the page life cycle than during the Init event, otherwise paging will not be applied. For the
CMSDataList and CMSRepeater controls, this can easily be solved by setting their DelayedLoading
property to true.

The QueryDataList and QueryRepeater controls do not have this property, however, you can ensure that
paging is applied correctly by setting their DataBindByDefault property to false and manually calling
their Databind() method during the Load event:

Kentico CMS Controls 37

© 2014 Kentico Software

[C#]

protected void Page_Load(object sender, EventArgs e)
{
 QueryRepeater1.DataBind();
}

The UniPager is also built into the CMSUniView and QueryUniView controls and can be enabled by
their EnablePaging property.

The portal engine equivalent of the UniPager control is the Listings and viewers -> Universal Pager
web part.

The following topics are available to help you familiarize yourself with the UniPager control:

Getting started - contains a quick step-by-step tutorial that allows you to learn the basics of using
the control
Configuration - describes and explains the properties that can be set for the control
Structure - contains a more advanced example of how the control can be configured and
demonstrates what individual template properties affect
Appearance and styling - describes how the design of the control can be modified
Implementing the IUniPageable interface - contains a tutorial describing how a custom control that is
pageable by the UniPager control can be created

1.6.3.5.2 Getting started

The following is a step-by-step tutorial that will show you how to add a simple pager to a CMSRepeater
control that displays all pages (menu items) in the system:

1. Create a new Web form somewhere in your website installation directory.

2. Switch to its Design tab, drag and drop a CMSRepeater control from the toolbox onto the form and
set its following properties:

ClassNames: cms.menuitem
DelayedLoading: True

3. Switch to the Source tab and add the code marked by the CMSRepeater templates comments
between the <cms:CMSRepeater> tags. The overall code of the CMSRepeater control should look like
this:

<cms:CMSRepeater ID="CMSRepeater1" runat="server" ClassNames="cms.menuitem"

DelayedLoading="true">

<%-- CMSRepeater templates

-- --%>

<ItemTemplate>

 <%# HTMLHelper.HTMLEncode(Convert.ToString(Eval("NodeAliasPath"))) %

>

Kentico CMS 7.0 Controls38

© 2014 Kentico Software

</ItemTemplate>

<AlternatingItemTemplate>

 <%# HTMLHelper.HTMLEncode(Convert.ToString

(Eval("NodeAliasPath"))) %>

</AlternatingItemTemplate>

<SeparatorTemplate>

</SeparatorTemplate>

<%-- CMSRepeater templates

-- --%>

</cms:CMSRepeater>

This sets the templates used by the CMSRepeater to display the pages (menu items). The control
dynamically replaces the <%# ... %> tags with values of the currently displayed record. This is then
repeated for every record in the data source.

4. Switch back to the Design tab, drag and drop a UniPager control from the toolbox onto the form one
line below the CMSRepeater and set its PageControl property to CMSRepeater1.

5. Switch to the Source tab and add the code marked by the UniPager templates comments between
the <cms:UniPager> tags. The overall code of the UniPager control should look like this:

<cms:UniPager ID="UniPager1" runat="server" PageControl="CMSRepeater1">

<%-- UniPager templates

--- --%>

<PageNumbersTemplate>

 <a href="<%# Eval("PageURL") %>"><%# Eval("Page") %>

</PageNumbersTemplate>

<%-- UniPager templates

--- --%>

</cms:UniPager>

This sets the minimum required template that enables the UniPager with a very simple design. Please
see the Structure topic to learn about the more advanced templates.

6. Save the changes to the web form. Now right-click it in the Solution explorer and select View in
Browser. The resulting page should look like this:

Kentico CMS Controls 39

© 2014 Kentico Software

1.6.3.5.3 Configuration

In addition to the properties from Paging controls - common properties, the following properties of the
UniPager control can be set or used in the API:

Property Name Description Sample Value

DataSourceItemsCount The amount of items in the data source.

DirectPageControlID The ID of the control used for direct page
changing.

DisplayFirstLastAutoma
tically

If enabled, the first and last buttons of the
pager will be displayed only when there is no
other way of accessing the first or last page
through the pager.

DisplayPreviousNextAut
omatically

If enabled, the previous and next buttons of
the pager will be displayed only when there
is no other way of accessing the previous or
next page through the pager.

EnvelopeTag The current envelope tag.

GroupSize The amount of page links displayed in one
group.

HidePagerForSinglePag
e

If true, the pager is hidden if only one page is
displayed.

HTMLEnvelopeRenderin
gMode

The HTML envelope rendering mode for the
current page.

"Always"
"Never"
"OnlyForUpdatePanel"

PageControl The ID of the control to be paged.

PagedControl The object of the control to be paged.

PagerMode Determines the type of the used paging
parameter. It can either be passed through
the URL (QueryString) or through postback
(PostBack).

"PostBack"
"QueryString"

QueryStringKey Name of the query string parameter that
contains the current page number. This is

"pagenumber"

Kentico CMS 7.0 Controls40

© 2014 Kentico Software

useful if there are multiple UniPager controls
on the same page.

RelatedData Custom data connected to the object.

1.6.3.5.4 Structure

This topic shows an example of how the UniPager control looks when all of its template properties are
defined. If you wish to create this example for yourself, please follow the tutorial in the Getting started
topic up to and including step 4, then continue with the following steps:

1. Add the code marked by the UniPager templates comments between the <cms:UniPager> tags.
The overall code of the UniPager control should look like this:

<cms:UniPager ID="UniPager1" runat="server" PageControl="CMSRepeater1">

<%-- UniPager templates

-- --%>

<PageNumbersTemplate>

 <a href="<%# Eval("PageURL") %>"><%# Eval("Page") %>

</PageNumbersTemplate>

<CurrentPageTemplate>

 <%# Eval("Page") %>

</CurrentPageTemplate>

<PageNumbersSeparatorTemplate>

 -

</PageNumbersSeparatorTemplate>

<FirstPageTemplate>

 <a href="<%# Eval("FirstURL") %>">|<

</FirstPageTemplate>

<LastPageTemplate>

 <a href="<%# Eval("LastURL") %>">>|

</LastPageTemplate>

<PreviousPageTemplate>

 <a href="<%# Eval("PreviousURL") %>"><

</PreviousPageTemplate>

<NextPageTemplate>

 <a href="<%# Eval("NextURL") %>">>

</NextPageTemplate>

<PreviousGroupTemplate>

 <a href="<%# Eval("PreviousGroupURL") %>">...

</PreviousGroupTemplate>

<NextGroupTemplate>

 <a href="<%# Eval("NextGroupURL") %>">...

</NextGroupTemplate>

<DirectPageTemplate>

 Page

 <asp:TextBox ID="DirectPageControl" runat="server" Style="width:

25px;" />

 of

 <%# Eval("Pages") %>

</DirectPageTemplate>

<LayoutTemplate>

 <asp:PlaceHolder runat="server" ID="plcFirstPage"></asp:PlaceHolder>

 <asp:PlaceHolder runat="server" ID="plcPreviousPage"></asp:

Kentico CMS Controls 41

© 2014 Kentico Software

PlaceHolder>

 <asp:PlaceHolder runat="server" ID="plcPreviousGroup"></asp:

PlaceHolder>

 <asp:PlaceHolder runat="server" ID="plcPageNumbers"></asp:

PlaceHolder>

 <asp:PlaceHolder runat="server" ID="plcNextGroup"></asp:

PlaceHolder>

 <asp:PlaceHolder runat="server" ID="plcNextPage"></asp:PlaceHolder>

 <asp:PlaceHolder runat="server" ID="plcLastPage"></asp:PlaceHolder>

 <asp:PlaceHolder runat="server" ID="plcDirectPage"></asp:

PlaceHolder>

</LayoutTemplate>

<%-- UniPager templates

-- --%>

</cms:UniPager>

This sets all the templates of the UniPager control.

2. Save the changes to the web form. Now right-click it in the Solution explorer and select View in
Browser. The resulting page should contain a pager like in the following diagram (without the
descriptions), which shows the structure of the UniPager control. Individual areas are described below.

Layout Template - determines the overall design of the displayed pager. To place the locations of
individual templates into the layout, use PlaceHolder controls with their ID properties set exactly like
in the example, e.g. plcFirstPage for the FirstPageTemplate etc. The content of individual pages is
dependant on the control that the UniPager is ensuring paging for. The maximum amount of
displayed items can be set through the UniPager control's PageSize property.
Page - this area is defined by the code of the PageNumbersTemplate. It is usually used to display
the general page links of the pager. The amount of displayed page links can be set by the UniPager
control's GroupSize property.
Current page - this area is defined by the code of the CurrentPageTemplate. It is usually used to
display the number of the currently selected page.
Direct page - this area is defined by the code of the DirectPageTemplate. It is usually used to
display a control that allows direct switching between pages. The ID property of the used control
must be set to DirectPageControl as in the example.
Separator - this area is defined by the code of the PageNumbersSeparatorTemplate. It is placed
between every page number in the pager.
First/Last page - these areas are defined by the code of the FirstPageTemplate and
LastPageTemplate. They are usually used to display links to the first and last page of the pager. If
the UniPager control's DisplayFirstLastAutomatically property is set to true, this area is only shown

Kentico CMS 7.0 Controls42

© 2014 Kentico Software

when there is no other way of accessing the first or last page through the pager.
Next/Previous page - these areas are defined by the code of the NextPageTemplate and
PreviousPageTemplate. They are usually used to display links to the next and previous page of the
pager. If the UniPager control's DisplayPreviousNextAutomatically property is set to true, this area is
 only shown when there is no other way of accessing the previous or next page through the pager.
Next/Previous group - these areas are defined by the code of the NextGroupTemplate and
PreviousGroupTemplate. They are usually used to display links to the next and previous group of
pages.

1.6.3.5.5 Appearance and styling

The appearance of the UniPager control is determined by the code of its templates and by certain other
properties.

The following templates can be defined within the tags of the UniPager control. Please refer to the
Structure topic to see what individual templates represent.

Template Name Description Sample Value

CurrentPageTemplate

Code of the template used for the current
page in the pager. Use <%# Eval("Page") %
> to get the current page number, <%# Eval
("PageURL") %> to get page the URL or <%
Eval("PageLink") %> to get the page link.

<%# Eval("Page")
%>

DirectPageTemplate Code of the template used for direct page
changing. Use a TextBox or DropDownList
control with ID DirectPageControl to register
the page change event.

Page
<asp:TextBox
ID="DirectPageControl"
runat="server"
Style="width: 25px;" />
of
<%# Eval("Pages") %>

FirstPageTemplate Code of the template used for the link to the
first page in the pager. Use <%# Eval
("FirstURL") %> to get the link to the first
page.

<a href="<%# Eval
("FirstURL") %>">|<</
a>

LastPageTemplate Code of thetemplate used for the link to the
last page in the pager. Use <%# Eval
("LastURL") %> to get the link to the last
page.

<a href="<%# Eval
("LastURL") %>">>|</
a>

LayoutTemplate Code of the template used for the overall
pager layout.

NextGroupTemplate Code of the template used for the link to the
next group of pages. Use <%# Eval
("NextGroupURL") %> to get the link to the
next group.

<a href="<%# Eval
("NextGroupURL") %
>">...

NextPageTemplate Code of the template used for the link to the
next page. Use <%# Eval("NextURL") %> to
get the link to the next page.

<a href="<%# Eval
("NextURL") %>">>

Kentico CMS Controls 43

© 2014 Kentico Software

PageNumbersSeparator
Template

Code of the template used for the separator
between page links in the pager.

PageNumbersTemplate Code of the template used for page links in
the pager. Use <%# Eval("Page") %> to get
the current page number, <%# Eval
("PageURL") %> to get the URL of the
current page or <%# Eval("PageLink") %> to
get the page link.

<a href="<%# Eval
("PageURL") %>"><%# Eval
("Page") %>

PreviousGroupTemplate Code of the template used for the link to the
previous group of pages. Use <%# Eval
("PreviousGroupURL") %> to get the link to
the next group.

<a href="<%# Eval
("PreviousGroupURL") %
>">...

PreviousPageTemplate Code of the template used for the link to the
previous page. Use <%# Eval
("PreviousURL") %> to get the link to the
next page.

<a href="<%# Eval
("PreviousURL") %>"><

1.6.3.5.6 Implementing the IUniPageable interface

The following is a step-by-step tutorial that will show you how to create a custom control that displays
users, and have it implement the IUniPageable interface to allow it to be paged by the UniPager control:

1. Create a new Web User Control called UniPageable_Repeater.ascx inside a folder called
IUniPageableExample in your website installation directory.

2. Now add the following code to the user control:

<asp:Repeater ID="Repeater1" runat="server">

 <ItemTemplate>

 <div>

 <%# Eval("UserName") %>

 </div>

 </ItemTemplate>

</asp:Repeater>

This adds a standard .NET Repeater control that will be used to display user names.

3. Switch to the code behind of the control and add the following code into it. Please keep in mind that
the name of the class will be different according to the location of your web user control.

[C#]

using CMS.SiteProvider;

using CMS.Controls;

Kentico CMS 7.0 Controls44

© 2014 Kentico Software

public partial class IUniPageableExample_UniPageable_Repeater :

System.Web.UI.UserControl, IUniPageable

{

 // Private variable containing the value of the PagerForceNumberOfResults

property

 private int mPagerForceNumberOfResults = -1;

 // Private variable used to contain the data source of the control

 private object dataSource = null;

 protected void Page_Load(object sender, EventArgs e)

 {

 // Loads all users from the database into the data source

 dataSource = UserInfoProvider.GetAllUsers();

 // Call page binding event

 if (OnPageBinding != null)

 {

 OnPageBinding(this, null);

 }

 // Assigns the data source to the encapsulated Repeater control

 Repeater1.DataSource = dataSource;

 Repeater1.DataBind();

 }

 /// <summary>

 /// Occurs when the control binds page data

 /// </summary>

 public event EventHandler<EventArgs> OnPageBinding;

 /// <summary>

 /// Occurs when the pager changes the page and the current PagerMode is set to

postback

 /// </summary>

 public event EventHandler<EventArgs> OnPageChanged;

 /// <summary>

 /// Exposes the data object for the pager

 /// </summary>

 public object PagerDataItem

 {

 get

 {

 return dataSource;

 }

 set

 {

 dataSource = value;

 Repeater1.DataSource = value;

 }

 }

 /// <summary>

 /// If set, the DataSet containing paged items is not modified by the pager,

 /// but the pager itself behaves as if the amount of paged items were

Kentico CMS Controls 45

© 2014 Kentico Software

identical to this value.

 /// By default this property is disabled (set to -1)

 /// </summary>

 public int PagerForceNumberOfResults

 {

 get

 {

 return mPagerForceNumberOfResults;

 }

 set

 {

 mPagerForceNumberOfResults = value;

 }

 }

 /// <summary>

 /// Evokes databinding for the control

 /// </summary>

 public void ReBind()

 {

 if (OnPageChanged != null)

 {

 OnPageChanged(this, null);

 }

 Repeater1.DataBind();

 }

}

This code causes the control to implement the IUniPageable interface and adds the implementation for
all its required members.

4. Save the changes to both files. Now the newly created control is pageable by the UniPager control.
Create a new Web form somewhere in your website installation directory, where this functionality will be
demonstrated.

5. Add the following directive to the beginning of the code of the new web form to register the custom
UniPageable_Repeater control:

<%@ Register src="~/IUniPageableExample/UniPageable_Repeater.ascx"

tagname="UniPageableRepeater"

tagprefix="asp1" %>

6. Now add the following code into the content area of the page (by default between the <div> tags
inside the <form> element):

<asp1:UniPageableRepeater ID="UPRepeater1" runat="server" />

<cms:UniPager ID="UniPager1" runat="server" PageControl="UPRepeater1"

PageSize="5">

<PageNumbersTemplate>

Kentico CMS 7.0 Controls46

© 2014 Kentico Software

 <a href="<%# Eval("PageURL") %>"><%# Eval("Page") %>

</PageNumbersTemplate>

</cms:UniPager>

This adds the custom control you created in the previous steps and a UniPager that is assigned to page
it.

7. Save the changes to the web form. Now right-click it in the Solution explorer and select View in
Browser. The resulting page should display a list of user names with a simple pager like in the following
image:

1.7 Basic Controls

1.7.1 Overview

Basic Controls are a set of controls that provide the same functionality as many standard ASP.NET
controls, but extend them with some additional configuration options. Their main purpose is to provide a
way to display external data that doesn't use Kentico CMS architecture.

The following control categories are available:

Navigation
Listings and viewers

1.7.2 Navigation

1.7.2.1 Overview

This section contains controls that provide basic navigation functionality.

Available controls:

BasicTabControl

1.7.2.2 BasicTabControl

1.7.2.2.1 Overview

The BasicTabControl control displays a tab menu according to data provided by a two dimensional array.
BasicTabControl doesn't use Kentico CMS database or API and can be used to navigate to pages
outside of Kentico CMS websites.

Kentico CMS Controls 47

© 2014 Kentico Software

Please note

If you want to display a tab menu based on data from Kentico CMS, please use the
CMSTabControl control.

The following topics are available to help you familiarize yourself with the BasicTabControl control:

Getting started - contains a step-by-step tutorial that allows you to learn the basics of using the
control
Configuration - describes and explains the properties that can be set for the control
Appearance and styling - lists which CSS classes can be used with the control and how its
appearance can be modified

1.7.2.2.2 Getting started

The following is a step-by-step tutorial that will show you how to display a simple tab menu using the
BasicTabControl control:

1. Create a new Web form somewhere in your website installation directory.

2. Switch to its Design tab, drag and drop a BasicTabControl control from the toolbox onto the form.

3. Switch to the Source tab. The code of the BasicTabControl control should look like this:

<cms:BasicTabControl ID="BasicTabControl1" runat="server" />

Now add the following code between the tags of the <head> element:

<style type="text/css">

/* Tab menu class definitions */

.TabControlTable { FONT-SIZE: 14px; FONT-FAMILY: Arial,Verdana }

.TabControlRow { }

.TabControl { BORDER-RIGHT: black 1px solid; BORDER-TOP: black 1px solid; FONT-

WEIGHT: bold; BACKGROUND: #e7e7ff; BORDER-LEFT: black 1px solid; CURSOR: hand;

COLOR: black }

.TabControlSelected { BORDER-RIGHT: black 1px solid; BORDER-TOP: black 1px solid;

FONT-WEIGHT: bold; BACKGROUND: #4a3c8c; BORDER-LEFT: black 1px solid; CURSOR:

default; COLOR: white }

.TabControlLinkSelected { COLOR: white; TEXT-DECORATION: none }

.TabControlLink { COLOR: black; TEXT-DECORATION: none }

.TabControlLeft { WIDTH: 1px }

.TabControlRight { WIDTH: 0px }

.TabControlSelectedLeft { WIDTH: 1px }

.TabControlSelectedRight { WIDTH: 0px }

</style>

This sets the CSS styles that will modify the appearance of the tab menu. The BasicTabControl control
renders tabs even without any CSS classes specified, but they are extremely basic and not very user

Kentico CMS 7.0 Controls48

© 2014 Kentico Software

friendly. You can find out what individual CSS classes affect in the Appearance and styling topic.

The classes are defined in the <head> element only for this quick example, if you wish to use the
control on a Kentico CMS website, it is recommended to define these classes in the used stylesheet in
the administration interface at Site Manager -> Development -> CSS stylesheets.

4. Add the following code just after the <cms:BasicTabControl> element. It will display a stripe under
the tabs.

<hr style="width:100%; height:2px; margin-top:0px;" />

5. Switch to the code behind of the page and add the following code to the Page_Load method:

[C#]

string[,] tabs = new string[3, 7];

tabs[0, 0] = " Home ";

tabs[0, 1] = "alert('It is very simple!');";

tabs[0, 2] = "http://www.kentico.com";

tabs[1, 0] = " Features ";

tabs[1, 2] = "http://www.kentico.com/free-cms-asp-net.aspx";

tabs[2, 0] = " Download ";

tabs[2, 2] = "http://www.kentico.com/download/trial-version.aspx";

tabs[2, 3] = "Some tooltip";

BasicTabControl1.Tabs = tabs;

BasicTabControl1.SelectedTab = 0;

BasicTabControl1.UrlTarget = "_blank";

BasicTabControl1.UseClientScript = true;

[VB.NET]

Dim tabs(2, 6) As String

tabs(0, 0) = " Home "

tabs(0, 1) = "alert('It\'s very simple!');"

tabs(0, 2) = "http://www.kentico.com"

tabs(1, 0) = " Features "

tabs(1, 2) = "http://www.kentico.com/free-cms-asp-net.aspx"

tabs(2, 0) = " Download "

tabs(2, 2) = "http://www.kentico.com/download/trial-version.aspx"

tabs(2, 3) = "Some tooltip"

BasicTabControl1.Tabs = tabs

BasicTabControl1.SelectedTab = 0

BasicTabControl1.UrlTarget = "_blank"

BasicTabControl1.UseClientScript = True

This creates an array of tab items and assigns it to the BasicTabControl control. It also selects the first
tab, sets the target frame to "_blank" and enables client script.

Kentico CMS Controls 49

© 2014 Kentico Software

6. Save the changes to the web form. Now right-click it in the Solution explorer and select View in
Browser. The resulting page should display a tab menu like this:

1.7.2.2.3 Configuration

The following properties of the BasicTabControl control can be set or used in the API:

Property Name Description Sample Value

HideControlForZeroRow
s

Hides the control when no data is loaded.
Default value is False.

RenderedHTML Allows you to get or set the HTML code
rendered by the control.

You need to set this property before the
Render event - e.g. in the OnLoad event.

RenderLinkTitle Specifies if the TITLE tag of links should be
rendered.

SelectedTab Index of the selected tab.

SelectFirstItemByDefau
lt

Indicates whether the first tab should be
selected by default.

TabControlIDPrefix Prefix that will be used for all IDs in the
HTML code rendered by the
BasicTabControl. It's useful if you need to
place multiple tab controls on the same
page.

"FirstTab"

TabControlLayout Specifies the layout of the tab control. "Horizontal"
"Vertical"

Tabs A 2 dimensional string array where each row
represents a tab and the columns represent
the following:

tabs[0, 0] = title
tabs[0, 1] = OnClick JavaScript
tabs[0, 2] = URL
tabs[0, 3] = tooltip
tabs[0, 4] = left image URL
tabs[0, 5] = center image URL
tabs[0, 6] = right image URL

Please note:

1. The image URLs in columns 4, 5 and 6
are optional.

tabs[0, 0] = "
Home ";
tabs[0, 1] = "alert('It is very
simple!');";
tabs[0, 2] = "http://
www.kentico.com";
tabs[0, 3] = "Some tooltip";
tabs[0, 4] = "leftimage.gif";
tabs[0, 5] =
"centerimage.gif";
tabs[0, 6] = "rightimage.gif";

Kentico CMS 7.0 Controls50

© 2014 Kentico Software

2. If you specify the center image URL, the
image is displayed instead of the title.

UrlTarget If a URL is set for tab items, this property
specifies the target frame for all URLs.

"_blank"

UseClientScript Indicates if client script should be generated
for each tab.

UsePostback Indicates if postback should be fired when a
tab is clicked.

ZeroRowsText Text to be shown when the control is hidden
by the HideControlForZeroRows property.

"No records found."

1.7.2.2.4 Appearance and styling

The appearance of the BasicTabControl control is determined by the CSS classes it uses and by some
of its properties.

You can use the following CSS classes to modify the design of the control:

Class Name Description

TabControlTable Table that contains the tabs (<TABLE> tag).

TabControlRow Table row (<TR> tag).

TabControl Tab item (<TD> tag).

TabControlSelected Selected tab item (<TD> tag).

TabControlLink Tab item link - if a URL is specified (<A> tag).

TabControlLinkSelected Selected tab item link - if a URL is specified (<A> tag).

TabControlLeft Left side of the tab item (<TD> tag).

TabControlRight Right side of the tab item (<TD> tag).

TabControlSelectedLeft Left side of the selected tab item (<TD> tag).

TabControlSelectedRight Right side of the selected tab item (<TD> tag).

1.7.3 Listings and viewers

1.7.3.1 Overview

The controls in this section provide various ways to display data from a specified data source. Options
include different types of lists, tables and calendars. Most of them are derived from standard ASP.NET
list controls.

These controls can work with any bindable data source, not just Kentico CMS documents. They are also
the best option for plain displaying of data from Kentico CMS data sources, because their performance

Kentico CMS Controls 51

© 2014 Kentico Software

is better than that of the more complex CMS controls.

Available controls:

BasicCalendar
BasicDataGrid
BasicDataList
BasicRepeater
BasicUniView

1.7.3.2 BasicCalendar

1.7.3.2.1 Overview

The BasicCalendar control allows you to display a calendar with events, news and other date-based
documents specified by a data source. It is derived from the intrinsic ASP.NET Calendar control, which
means it provides advanced formatting capabilities and it allows you to display additional information for
appropriate days.

The BasicCalendar can be used with any bindable data source - it doesn't use Kentico CMS database or
API.

Please note

The CMSCalendar control provides a more convenient way to display data from the
Kentico CMS Database in a calendar.

The following topics are available to help you familiarize yourself with the BasicCalendar control:

Getting started - contains a step-by-step tutorial that allows you to learn the basics of using the
control
Configuration - describes and explains the properties that can be set for the control
Appearance and styling - describes how the design of the control can be modified

1.7.3.2.2 Getting started

The following is a step-by-step tutorial that will show you how to display a calendar that contains links to
news items (CMS.News documents) on days when news items were released using the BasicCalendar
control:

1. Create a new Web form somewhere in your website installation directory.

2. Switch to its Design tab, drag and drop a BasicCalendar control from the toolbox onto the form.

3. Switch to the Source tab and add the code marked by the BasicCalendar templates comments
between the <cms:BasicCalendar> tags. The overall code of the BasicCalendar control should look like
this:

<cms:BasicCalendar ID="BasicCalendar1" runat="server">

Kentico CMS 7.0 Controls52

© 2014 Kentico Software

<%-- BasicCalendar templates

-- --%>

<ItemTemplate>

 <a href='<%# ResolveUrl(CMS.CMSHelper.CMSContext.GetUrl

(Convert.ToString(Eval("NodeAliasPath")), Convert.ToString(Eval

("DocumentUrlPath")))) %>'>

 <%# Eval("NewsTitle") %>

</ItemTemplate>

<NoEventsTemplate>

 No Event

</NoEventsTemplate>

<%-- BasicCalendar templates

-- --%>

</cms:BasicCalendar>

This sets the template used to specify the layout of days with and without news releases. For days with
news releases, the control dynamically replaces the <%# ... %> tags with values of the current news
document from the data source.

4. Switch to the code behind of the page and add the following reference to the beginning of the code:

[C#]

using CMS.CMSHelper;

[VB.NET]

Imports CMS.CMSHelper

5. Now add the following code to the Page_Load method:

[C#]

BasicCalendar1.DataSource = TreeHelper.SelectNodes("/%", false, "cms.news", null,

"NewsReleaseDate", -1, true);

BasicCalendar1.DayField = "NewsReleaseDate";

BasicCalendar1.DataBind();

[VB.NET]

Kentico CMS Controls 53

© 2014 Kentico Software

BasicCalendar1.DataSource = TreeHelper.SelectNodes("/%", False, "cms.news",

Nothing, "NewsReleaseDate", -1, True)

BasicCalendar1.DayField = "NewsReleaseDate"

BasicCalendar1.DataBind()

This retrieves all news items from the Kentico CMS database as a DataSet and assigns it as the data
source of the BasicCalendar control. It also fills the DayField property, which tells the control which field
it should get date/time values from.

6. Save the changes to the web form. Now right-click it in the Solution explorer and select View in
Browser. The resulting page should display a calendar like this:

1.7.3.2.3 Configuration

The following properties of the BasicCalendar control can be set or used in the API:

Property Name Description Sample Value

CustomTimeZone A custom time zone to be used represented
by a TimeZoneInfo object.

DataMember
Name of the table when a DataSet is used
as a DataSource.

DataSource Data source with calendar events - either a
DataSet or DataTable object.

DayField Name of the field in the data source that
contains the date/time value.

"NewsReleaseDate"

DayWithEventsStyle Style of days that have an event.

DisplayOnlySingleDayIt
em

Indicates whether only one item is displayed
in a single day item.

HideDefaultDayNumber Indicates whether the day number should be
displayed or if the day cell should be fully
filled by the used template.

Kentico CMS 7.0 Controls54

© 2014 Kentico Software

RelatedData Custom data connected to the object.

TimeZone Specifies the time zone type. "Custom"
"Inherit"
"Server"
"User"
"WebSite"

As this control is inherited from the ASP.NET Calendar control, it also has all of its standard properties.

1.7.3.2.4 Appearance and styling

You can modify the appearance of the BasicCalendar control by setting the standard properties inherited
from the ASP.NET Calendar control. You can find more details on particular properties in the .NET
Framework documentation for the Calendar class.

A common way to set the appearance of this control is to assign a skin through the SkinID property.
Skins can be defined in .skin files under individual themes in the App_Themes folder. More information
can be found in the .NET Skins and Themes documentation.

The design of day cells is determined by the code of the templates defined within the tags of the
BasicCalendar control. The following are available:

Template Name Description Sample Value

ItemTemplate Template for displaying a day with an event.

NoEventsTemplate
Template for displaying a day without any
event.

1.7.3.3 BasicDataGrid

1.7.3.3.1 Overview

The BasicDataGrid control allows you to display items from a data source in a customizable table. It is
derived from the intrinsic ASP.NET DataGrid control, so it automatically provides paging and sorting
support. You can use the standard DataGrid designer to set up BasicDataGrid style and behavior.

The BasicDataGrid can be used with any bindable data source - it doesn't use Kentico CMS database or
API.

Please note

The CMSDataGrid control provides a more convenient way to display data from the
Kentico CMS Database in a table.

The following topics are available to help you familiarize yourself with the BasicDataGrid control:

Getting started - contains a step-by-step tutorial that allows you to learn the basics of using the

http://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.calendar.aspx
http://msdn.microsoft.com/en-us/library/ykzx33wh.aspx

Kentico CMS Controls 55

© 2014 Kentico Software

control
Configuration - describes and explains the properties that can be set for the control
Appearance and styling - describes how the design of the control can be modified

1.7.3.3.2 Getting started

The following is a step-by-step tutorial that will show you how to display a table that contains laptops
(CMS.Laptop documents) from the sample Corporate Site using the BasicDataGrid control:

1. Create a new Web form somewhere in your website installation directory.

2. Switch to its Design tab, drag and drop a BasicDataGrid control from the toolbox onto the form.

3. Right-click the BasicDataGrid on the form, select AutoFormat... and choose a scheme.

4. Right-click the BasicDataGrid on the form, select Show Smart Tag and then Property Builder...;
the BasicDataGrid1 Properties dialog will be displayed.

On the General tab, check the Allow sorting box.

Now switch to the Columns tab, where you can specify the columns that will be displayed, and uncheck
the Create columns automatically at run time box.

Add a new Bound Column from the Available columns list to the Selected columns list. Enter the
following values into the appropriate fields:

Header text: Name
Data Field: LaptopName
Sort expression: LaptopName

Add another Bound column. Enter the following values in the appropriate fields:

Header text: Price
Data Field: SKUPrice
Sort expression: SKUPrice

Click OK.

5. Switch to the code behind of the page and add the following references to the beginning of the code:

[C#]

using System.Data;

using CMS.CMSHelper;

[VB.NET]

Imports System.Data

Kentico CMS 7.0 Controls56

© 2014 Kentico Software

Imports CMS.CMSHelper

6. Now add the following code to the Page_Load method:

[C#]

DataSet ds = TreeHelper.SelectNodes("/%", false, "CMS.Laptop", "", "LaptopName", -

1, true);

BasicDataGrid1.DataSource = ds;

BasicDataGrid1.DataBind();

[VB.NET]

Dim ds As DataSet = TreeHelper.SelectNodes("/%", False, "CMS.Laptop", "",

"LaptopName", -1, True)

BasicDataGrid1.DataSource = ds

BasicDataGrid1.DataBind()

This retrieves all CMS.Laptop documents from the Kentico CMS database as a DataSet and assigns it
as the data source of the BasicDataGrid control.

7. Save the changes to the web form. Now right-click it in the Solution explorer and select View in
Browser. The resulting page should display a table similar to the following (depending on the chosen
scheme):

1.7.3.3.3 Configuration

The following properties of the BasicDataGrid control can be set or used in the API:

Property Name Description Sample Value

DataBindByDefault
Indicates whether data binding should be
performed by default during the init event.

HideControlForZeroRow
s

Indicates whether the control should be
hidden when no data is loaded. The default
value is False.

Kentico CMS Controls 57

© 2014 Kentico Software

ProcessSorting Indicates whether sorting should be
processed in the DataView instead of sorting
on the SQL level.

RelatedData Custom data connected to the object.

SetFirstPageAfterSortC
hange

Indicates if the page index should be set to
the first page when sorting is changed.

SortAscending Indicates whether sorting should be
ascending. Default value is True.

SortField Gets or sets the sort field. It can be used for
setting the default sort field.

"NewsReleaseDate"

ZeroRowsText Text to be shown when the control is hidden
by the HideControlForZeroRows property.

"No records found"

As this control is inherited from the ASP.NET DataGrid control, it also has all of its standard properties.

1.7.3.3.4 Appearance and styling

You can modify the appearance of the BasicDataGrid control by setting the standard properties inherited
from the ASP.NET DataGrid control. You can find more details on particular properties in the .NET
Framework documentation for the DataGrid class.

A common way to set the appearance of this control is to assign a skin through the SkinID property.
Skins can be defined in .skin files under individual themes in the App_Themes folder. More information
can be found in the .NET Skins and Themes documentation.

1.7.3.4 BasicDataList

1.7.3.4.1 Overview

The BasicDataList control allows you to display items from a data source in a list based on specified
templates. It is is derived from the intrinsic ASP.NET DataList control, so standard ASP.NET
configuration techniques can be used to set up BasicDataList style and behaviour.

The BasicDataList can be used with any bindable data source - it doesn't use Kentico CMS database or
API.

Unlike the BasicRepeater control, the BasicDataList allows you to display data in several columns.

The portal engine equivalent of the BasicDataList control is the Listings and viewers -> Basic datalist
web part.

Please note

The CMSDataList control provides a more convenient way to display data from Kentico
CMS.

http://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.datagrid.aspx
http://msdn.microsoft.com/en-us/library/ykzx33wh.aspx

Kentico CMS 7.0 Controls58

© 2014 Kentico Software

The following topics are available to help you familiarize yourself with the BasicDataList control:

Getting started - contains a step-by-step tutorial that allows you to learn the basics of using the
control
Configuration - describes and explains the properties that can be set for the control
Appearance and styling - describes how the design of the control can be modified

1.7.3.4.2 Getting started

The following is a step-by-step tutorial that will show you how to display a list of smartphones
(CMS.Smartphone documents) from the sample Corporate Site using the BasicDataList control:

1. Create a new Web form somewhere in your website installation directory.

2. Switch to its Design tab, drag and drop a BasicDataList control from the toolbox onto the form and
set its RepeatColumns property value to 3. This determines the number of columns that should be
displayed.

3. Switch to the Source tab and add the code marked by the BasicDataList template comments
between the <cms:BasicDataList> tags. The overall code of the BasicDataList control should look like
this:

<cms:BasicDataList ID="BasicDataList1" runat="server" RepeatColumns="3">

<%-- BasicDataList template

--- --%>

<itemtemplate>

 <div style="width: 250px">

 <h3>

 <%# Eval("SmartphoneName") %>

 </h3>

 <%# EcommerceFunctions.GetProductImage(Eval("SKUImagePath"), 200,

Eval("SmartphoneName")) %>

 </div>

</itemtemplate>

<%-- BasicDataList template

--- --%>

</cms:BasicDataList>

This defines the template used by the BasicDataList to display items. The control dynamically replaces
the <%# ... %> tags with values of the currently displayed record. This is then repeated for every record
in the data source.

4. Switch to the code behind of the page and add the following references to the beginning of the code:

[C#]

using System.Data;

Kentico CMS Controls 59

© 2014 Kentico Software

using CMS.CMSHelper;

[VB.NET]

Imports System.Data

Imports CMS.CMSHelper

5. Now add the following code to the Page_Load method:

[C#]

DataSet ds = TreeHelper.SelectNodes("/%", false, "CMS.Smartphone", "",

"SmartphoneName", -1, true);

BasicDataList1.DataSource = ds;

BasicDataList1.DataBind();

[VB.NET]

Dim ds As DataSet = TreeHelper.SelectNodes("/%", False, "CMS.Smartphone", "",

"SmartphoneName", -1, True)

BasicDataList1.DataSource = ds

BasicDataList1.DataBind()

This retrieves all CMS.Smartphone documents from the Kentico CMS database as a DataSet and
assigns it as the data source of the BasicDataList control.

6. Save the changes to the web form. Now right-click it in the Solution explorer and select View in
Browser. The resulting page should display a list similar to the following:

Kentico CMS 7.0 Controls60

© 2014 Kentico Software

1.7.3.4.3 Configuration

The following properties of the BasicDataList control can be set or used in the API:

Property Name Description Sample Value

DataBindByDefault
Indicates whether data binding should be
performed by default during the init event.

HideControlForZeroRow
s

Indicates whether the control should be
hidden when no data is loaded. The default
value is False.

PagerDataItem Gets or sets the pager data item object.

PagerForceNumberOfR
esults

If set, the DataSet containing paged items is
not modified by the pager, but the pager
itself behaves as if the amount of paged
items were identical to this value. The value
must be set to -1 for the property to be
disabled.

RelatedData Custom data connected to the object.

ZeroRowsText Text to be shown when the control is hidden
by the HideControlForZeroRows property.

"No records found."

As this control is inherited from the ASP.NET DataList control, it also has all of its standard properties.

Kentico CMS Controls 61

© 2014 Kentico Software

1.7.3.4.4 Appearance and styling

You can modify the appearance of the BasicDataList control by setting the standard properties and
templates inherited from the ASP.NET DataList control. You can find more details on particular
properties in the .NET Framework documentation for the DataList class.

The following templates can be defined:

Template Name Description Sample Value

AlternatingItemTemplat
e

Code of the template applied to alternating
items.

EditItemTemplate Code of the template applied to the item
selected for editing.

FooterTemplate Code of the template used for the footer of
the list.

HeaderTemplate Code of the template used for the header of
the list.

ItemTemplate Code of the template applied to standard
items.

<div style="width:
100%">
<h3>
<%# Eval("CellName") %>
</h3>
<%#
EcommerceFunctions.GetPr
oductImage(Eval
("SKUImagePath"), 200) %
>
</div>

SelectedItemTemplate Code of the template applied to the selected
item.

SeparatorTemplate Code of the template used for separating
items.

1.7.3.5 BasicRepeater

1.7.3.5.1 Overview

The BasicRepeater control allows you to display items from a data source in a list based on specified
templates. It is derived from the intrinsic ASP.NET Repeater control, so standard ASP.NET configuration
techniques can be used to set up BasicRepeater style and behaviour.

BasicRepeater can be used with any bindable data source - it doesn't use the Kentico CMS database or
API.

The portal engine equivalent of the BasicRepeater control is the Listings and viewers -> Basic
repeater web part.

http://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.datalist.aspx

Kentico CMS 7.0 Controls62

© 2014 Kentico Software

Please note

The CMSRepeater control provides a more convenient way to display data from Kentico
CMS.

The following topics are available to help you familiarize yourself with the BasicRepeater control:

Getting started - contains a step-by-step tutorial that allows you to learn the basics of using the
control
Configuration - describes and explains the properties that can be set for the control
Appearance and styling - describes how the design of the control can be modified

1.7.3.5.2 Getting started

The following is a step-by-step tutorial that will show you how to display a list of laptops (CMS.Laptop
documents) from the sample Corporate Site using the BasicRepeater control:

1. Create a new Web form somewhere in your website installation directory.

2. Switch to its Design tab, drag and drop a BasicRepeater control from the toolbox onto the form.

3. Switch to the Source tab and add the code marked by the BasicRepeater template comments
between the <cms:BasicRepeater> tags. The overall code of the BasicRepeater control should look like
this:

<cms:BasicRepeater ID="BasicRepeater1" runat="server">

<%-- BasicRepeater template

--- --%>

<itemtemplate>

 <h3>

 <%# Eval("LaptopName") %>

 </h3>

 <%# EcommerceFunctions.GetProductImage(Eval("SKUImagePath"), 200,

Eval("LaptopName")) %>

</itemtemplate>

<%-- BasicRepeater template

--- --%>

</cms:BasicRepeater>

This defines the template used by the BasicRepeater to display items. The control dynamically replaces
the <%# ... %> tags with values of the currently displayed record. This is then repeated for every record
in the data source.

4. Switch to the code behind of the page and add the following references to the beginning of the code:

[C#]

Kentico CMS Controls 63

© 2014 Kentico Software

using System.Data;

using CMS.CMSHelper;

[VB.NET]

Imports System.Data

Imports CMS.CMSHelper

5. Now add the following code to the Page_Load method:

[C#]

DataSet ds = TreeHelper.SelectNodes("/%", false, "CMS.Laptop", "", "LaptopName", -

1, true);

BasicRepeater1.DataSource = ds;

BasicRepeater1.DataBind();

[VB.NET]

Dim ds As DataSet = TreeHelper.SelectNodes("/%", False, "CMS.Laptop", "",

"LaptopName", -1, True)

BasicRepeater1.DataSource = ds

BasicRepeater1.DataBind()

This retrieves all CMS.Laptop documents from the Kentico CMS database as a DataSet and assigns it
as the data source of the BasicRepeater control.

6. Save the changes to the web form. Now right-click it in the Solution explorer and select View in
Browser. The resulting page should display a list similar to the following:

Kentico CMS 7.0 Controls64

© 2014 Kentico Software

1.7.3.5.3 Configuration

The following properties of the BasicRepeater control can be set or used in the API:

Property Name Description Sample Value

DataBindByDefault
Indicates whether data binding should be
performed by default during the init event.

HideControlForZeroRow
s

Indicates whether the control should be
hidden when no data is loaded. The default
value is False.

PagerDataItem Gets or sets the pager data item object.

PagerForceNumberOfR
esults

If set, the DataSet containing paged items is
not modified by the pager, but the pager
itself behaves as if the amount of paged
items were identical to this value. The value
must be set to -1 for the property to be
disabled.

RelatedData Custom data connected to the object.

ZeroRowsText Text to be shown when the control is hidden
by the HideControlForZeroRows property.

"No records found."

Kentico CMS Controls 65

© 2014 Kentico Software

As this control is inherited from the ASP.NET Repeater control, it also has all of its standard properties.

1.7.3.5.4 Appearance and styling

You can modify the appearance of the BasicRepeater control by setting the standard properties and
templates inherited from the ASP.NET Repeater control. You can find more details on particular
properties in the .NET Framework documentation for the Repeater class.

The following templates can be defined:

Template Name Description Sample Value

AlternatingItemTemplat
e

Code of the template applied to alternating
items.

FooterTemplate Code of the template used for the footer of
the list.

HeaderTemplate Code of the template used for the header of
the list.

ItemTemplate Code of the template applied to standard
items.

<div style="width:
100%">
<h3>
<%# Eval("CellName") %>
</h3>
<%#
EcommerceFunctions.GetPr
oductImage(Eval
("SKUImagePath"), 200) %
>
</div>

SeparatorTemplate Code of the template used for separating
items.

1.7.3.6 BasicUniView

1.7.3.6.1 Overview

The BasicUniView control allows you to display items from a data source in a hierarchical structure
based on specified templates. It is derived from the UniView control, but is extended to include several
more properties.

BasicUniView can be used with any bindable data source - it doesn't use Kentico CMS database or API.

The portal engine equivalent of the BasicUniView control is the Listings and viewers -> Basic
universal viewer web part.

Please note

http://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.repeater.aspx

Kentico CMS 7.0 Controls66

© 2014 Kentico Software

If you want to display documents from Kentico CMS, please use the CMSUniView
control that provides a more convenient way.

The following topics are available to help you familiarize yourself with the BasicUniView control:

Getting started - contains a step-by-step tutorial that allows you to learn the basics of using the
control
Configuration - describes and explains the properties that can be set for the control
Appearance and styling - describes how the design of the control can be modified

1.7.3.6.2 Getting started

The following is a step-by-step tutorial that will show you how to display all pages (CMS.MenuItem
documents) from the sample Corporate Site in a hierarchical structure using the BasicUniView control:

1. Create a new Web form somewhere in your website installation directory.

2. Switch to its Design tab, drag and drop the BasicUniView control from the toolbox onto the form.

3. Add the code marked by the BasicUniView templates comments between the <cms:BasicUniView>
tags. The overall code of the BasicUniView control should look like this:

<cms:BasicUniView ID="BasicUniView1" runat="server">

<%-- BasicUniView templates

-- --%>

<ItemTemplate>

 <%# HTMLHelper.HTMLEncode(Convert.ToString(Eval("NodeAliasPath"))) %>

</ItemTemplate>

<AlternatingItemTemplate>

 <%# HTMLHelper.HTMLEncode(Convert.ToString(Eval

("NodeAliasPath"))) %>

</AlternatingItemTemplate>

<SeparatorTemplate>

</SeparatorTemplate>

<HeaderTemplate>

</HeaderTemplate>

<FooterTemplate>

</FooterTemplate>

<%-- BasicUniView templates

-- --%>

</cms:BasicUniView>

Kentico CMS Controls 67

© 2014 Kentico Software

This sets the templates used when displaying the menu items. The control dynamically replaces the <%
... %> tags with values of the currently displayed record. This is then repeated for every record in the
data source.

4. Add the following references to the beginning of the web form code-behind:

[C#]

using System.Data;

using CMS.CMSHelper;

using CMS.GlobalHelper;

using CMS.SettingsProvider;

5. Now add the following code to the Page_Load method:

[C#]

//Create DataSet containing all menu item documents in the system

DataSet ds = TreeHelper.SelectNodes("/%", false, "CMS.MenuItem", "", "NodeLevel,

NodeOrder", -1, true);

 //Check that the DataSet isn't empty

 if (!DataHelper.DataSourceIsEmpty(ds))

 {

 //Create GroupedDataSource from the ds DataSet

 GroupedDataSource gpd = new GroupedDataSource(ds, "NodeParentID",

"NodeLevel");

 //Set RelationColumnID property of the UniView control

 this.BasicUniView1.RelationColumnID = "NodeID";

 //Bind the DataSet to the UniView control

 this.BasicUniView1.DataSource = gpd;

 this.BasicUniView1.DataBind();

 }

This code reads documents from the database, saves them in a DataSet and then groups them
according to the NodeID of their parent document and determines their level in the hierarchy according to
their NodeLevel. This grouped data source is then provided to the BasicUniView control.

6. Save the changes to the web form and its code-behind file. Now right-click it in the Solution explorer
and select View in Browser. The resulting page should look like this:

Kentico CMS 7.0 Controls68

© 2014 Kentico Software

1.7.3.6.3 Configuration

As it is inherited from the UniView control, the BasicUniView control has all of its properties (including
templates). These can be found in the UniView -> Configuration topic. In addition, it has the following
properties that can be set or used in the API:

Property Name Description Sample Value

DataBindByDefault
Indicates whether data binding should be
performed by default during the init event.

DataSource The object from which the list of data items
is retrieved.

HideControlForZeroRow
s

Indicates whether the control should be
hidden when no data is loaded. The default
value is False.

RelatedData Custom data connected to the object.

ZeroRowsText Text to be shown when the control is hidden
by the HideControlForZeroRows property.

"No records found."

1.7.3.6.4 Appearance and styling

The appearance of the BasicUniView control is determined by the code of its templates (inherited from
the UniView control).

Kentico CMS Controls 69

© 2014 Kentico Software

You can use two different approaches to define the output format of the BasicUniView control:

Item templates (inherited from UniView)
A hierarchical transformation assigned through the Transformations property in the API

1.8 CMS Controls

1.8.1 Overview

CMS Controls are a set of controls that were designed to work within the Kentico CMS system. This
means they are meant to be used only with data from Kentico CMS database and documents. They
automatically perform many routine tasks, which makes them easier to work with, as common use does
not require the writing of any additional code.

As they work with CMS documents, most of the controls in this section have a Path property that allows
the selection of the documents that should be affected. The Path specification in controls and web parts
topic explains the way this property should be filled.

To optimize the performance of the websites they are used on, CMS controls provide caching support.
To learn more about this subject and how related configuration can be done, please see the Caching
topic.

The following control categories are available:

Navigation
Listings and viewers
Edit mode buttons
Editable regions for ASPX templates
Search Controls

1.8.2 Path specification in controls and web parts

CMS controls (and web parts) that display document data or navigation elements use a Path property to
select a set of documents from the content tree.

The Path property accepts path expressions based on the alias path values of documents. You can
use either the exact paths of individual documents or expressions containing special characters, which
specify multiple documents or relative paths.

Using wildcard characters % and _

You can use % as a wildcard character for any number of characters, which allows you to select all
documents under the specified site section.

Examples:

/ - only the root document
/% - all documents

/Products - only the Products document.

http://devnet.kentico.com/docs/7_0/devguide/hierarchical_transformations.htm

Kentico CMS 7.0 Controls70

© 2014 Kentico Software

/Products/% - all child documents under the Products document.

You can also use the _ character (underscore) as a wildcard representing a single character.

Examples:

/Product_ - selects documents /ProductA, /Product1, etc.

Leaving the Path value empty

In many cases, you can leave the Path value empty.

For navigation controls/web parts (such as CMSMenu/Drop-down menu), an empty value sets the path
to all documents: /%

Listing controls/web parts with document data sources (such as CMSRepeater/Repeater) evaluate
empty path values dynamically based on the document type of the current document:

If the type matches the value of the control or web part's ClassNames (Document types) property,
the empty path automatically selects the current document.
If the document type does not match, the path is set to all child documents: <current alias path>/%

Using formatting strings to get parts of the path

You can also use special expressions that extract parts of the current path.

Examples:

/{0}/{1}/% - all documents under the second document level of the current path
/{0}/{1}/Details - document Details on the second document level of the current path

Using relative paths

You can use relative path expressions to specify sub-documents or parent documents.

Examples:

. - current path

.. - parent document of the current path

./Product - document Product under the current path

../Product - document Product under the parent document of the current path

./% - all documents under the current path

../% - all documents under the parent document of the current path

1.8.3 Caching

What is Caching

Caching allows you to minimize the number of performed database queries. The server can store the
data in the application's memory and the next time a user requests the content, the server will return it
from the memory instead of performing a resource-intensive database query. Caching can improve the
performance of your website significantly, depending on the specifics of your application.

Kentico CMS Controls 71

© 2014 Kentico Software

The content expires after the specified time span and must be retrieved from the database again. Each
cached item has its name and the cache memory is common for all pages in your web application.

Caching Support in Kentico CMS

You can manage the caching either by yourself in your code (please see the .NET Framework SDK
documentation for more details) or you can leverage caching features of the following Kentico CMS
Controls that are also used in CMS web parts:

Controls in the CMS Controls -> Navigation section
Controls in the CMS Controls -> Listings and viewers section
CMSPageManager
CMSSearchResults

All of these controls offer the following properties, that allow you to set up caching:

Property Name Description Sample Value

CacheDependencies List of the cache keys on which the cached
data depends.

cms.user|all

CacheItemName Name of the cache item the control will use. "products_" &
request.querystring
("categoryid")

CacheMinutes
Number of minutes the retrieved content is
cached for.

"10"

Cache Expiration Time

By setting the CacheMinutes property to a value higher than zero, the control starts to cache its source
data. You can configure caching for all Kentico CMS content using the Cache content (minutes)
setting in the Site Manager -> Settings -> System -> Performance section. If you set any particular
value to the CacheMinutes property of a control/web part, it overrides the global settings. If you leave the
value empty or set it to -1 (minus one), the global settings apply.

The caching mechanism of Kentico CMS Controls uses absolute expiration time instead of sliding
expiration. It means that the cache item expires after a specified period of time regardless of if it was
requested or not. It ensures that content is updated from the database at a regular interval.

Overriding the site-level caching settings

If you need to cache most of the content on your website, but still want to have a single control/web part
that doesn't use cache, you can configure caching as described in the previous paragraph and set the
value 0 (zero) to the CacheMinutes property of the particular control. It will override the site-level
settings and disable caching for the single control/web part.

Cache Item Name

It's important to understand the CacheItemName property: Since the cache is common for all pages in
your application, the cache item name should be unique not only for all pages, but also inside one page

Kentico CMS 7.0 Controls72

© 2014 Kentico Software

(in case you use several Kentico CMS Controls with caching on one page).

When you leave the CacheItemName property empty, the control automatically generates a name in
this form: URL including parameters|control ID

If the content displayed on the page depends on some parameter, such as a URL parameter or the role
of the current user, you need to adjust the CacheItemName value accordingly.

Example:

Your page products.aspx displays products according to the category that is passed through the URL
parameter category. You will need to use code like this to ensure that the content will be cached "per
category":

[C#]

CMSDataGrid.CacheItemName = "products_grid1_" + Request.QueryString["category"];

[VB.NET]

CMSDataGrid.CacheItemName = "products_grid1_" & Request.QueryString("category")

Cache dependencies

Using the CacheDependencies property, you can specify which object changes cause the control/web
part's cache to get cleared. Below, you can find a table showing which dummy cache keys get touched
when some object gets changed, including some examples. By entering the appropriate dummy keys,
one per line, you can specify that when the object gets changed, the cache gets cleared.

If you leave the property empty, default settings will be used. The default settings are configured for each
control and include all possible object changes that the content of the web part could depend on.

Object Touched keys Sample values

Document
(TreeNode)

node|<sitename>|<aliaspath>|<culture>
node|<sitename>|<aliaspath>
nodeid|<nodeid>
nodeid|<linkednodeid>
nodes|<sitename>|<classname>|all
+ for every parent node:
node|<sitename>|<aliaspath>|childnodes

node|corporatesite|/home|en-
us
node|corporatesite|/home
nodeid|12
nodeid|34
nodes|corporatesite|
cms.menuitem|all

node|sitename|/|childnodes

Any object
(except documents)

<classname>|all
<classname>|byid|<id>
<classname>|byname|<codename>
<classname>|byguid|<guid>

cms.user|all
cms.user|byid|53
cms.user|byname|
administrator
cms.user|byguid|1ced44f3-

Kentico CMS Controls 73

© 2014 Kentico Software

f2fc- ...

Metafile metafile|<guid> metafile|1ced44f3-f2fc- ...

Document attachment attachment|<guid> attachment|1ced44f3-f2fc- ...

Forum attachment forumattachment|<guid> forumattachment|1ced44f3-
f2fc- ...

Avatar avatarfile|<guid> avatarfile|1ced44f3-f2fc- ...

Media file mediafile|<guid>
mediafile|preview|<guid>

mediafile|1ced44f3-f2fc- ...
mediafile|preview|1ced44f3-
f2fc- ...

Page template template|<id> template|12

CacheHelper
.ClearFullPageCache

fullpage fullpage

Example:

1. Let's presume that you have a control/web part displaying some information about users. Therefore,
whenever some user gets their details modified, the control/web part's cache should be cleared. To
ensure this, you need to enter cms.user|all into the property, which is the dummy key that would get
touched whenever some user's details get changed.

2. Now let's presume that your control/web part is displaying information about one particular user - the
administrator. Her user name is administrator, her ID is 53 and her GUID is something beginning with
1ced44f3-f2fc. So if you want to have the cache cleared whenever this user's details are changed, you
can use any of the following three keys that specify the user by the previously named properties:

cms.user|byid|53
cms.user|byname|administrator
cms.user|byguid|1ced44f3-f2fc-...

1.8.4 CMS controls - common properties

The following properties provide configuration options for selecting Kentico CMS documents to most of
the CMS Navigation and Standard listings and viewers controls. Please be aware that certain controls
only use some of these properties:

Property Name Description Sample Value

CheckPermissions Allows you to specify whether check
permissions of the current user should be
checked. If the value is false (default value)
no permissions are checked. Otherwise,
only nodes for which the user has read
permission are selected.

ClassNames Specifies which types of documents should
be selected. Document types must be
identified through their code names. Several

"cms.news"
or
"cms.news;cms.article"

Kentico CMS 7.0 Controls74

© 2014 Kentico Software

values separated by semicolons (;) can be
entered.

The * wildcard can be used as a substitute
for a random sequence of characters. For
example Product.* would include the
document types Product.Camera,
Product.CellPhone, Product.Computer etc.

If the property is left empty, controls retrieve
all document types by default. In the case of
menu and navigation controls, page
(cms.MenuItem) documents are selected by
default.

Please note: If all document types are
loaded (empty value), only the common data
columns from the View_CMS_Tree_Joined
view will be available in the retrieved data.
The specific fields of individual document
types will not be included. This should be
considered in the code of transformations,
WHERE conditions, ORDER BY
expressions etc.

CombineWithDefaultCul
ture

Indicates whether documents from the
default culture version should be used if they
are not available in the selected culture. This
property is applied only if you do not set the
TreeProvider property manually.

CultureCode Culture code of documents to be selected,
such as en-us. If not specified, it's read from
the user's session or the default value is
used.

"en-us"

DataSource Gets or sets a DataSet containing values
used to fill the items of the control.

FilterOutDuplicates Indicates if duplicated (linked) documents
should be filtered out from the data.

MaxRelativeLevel Specifies the maximum number of content
tree sub-levels from which content should be
displayed. This number is relative, i.e.
counted from the location of the page that
the control is placed on.

Entering -1 causes all child documents to be
selected.

Path Path of the documents to be selected.

See Path specification for details.

See Path specification for
examples.

Kentico CMS Controls 75

© 2014 Kentico Software

SelectOnlyPublished Indicates whether only published documents
should be selected.

TreeProvider Tree provider instance used to access data.
If no TreeProvider is assigned, a new
TreeProvider instance is created
automatically.

CMS base - common properties:

The following properties provide basic configuration options to most of the CMS Navigation and Listings
and viewers controls. Please be aware that certain controls only use some of these properties:

Property Name Description Sample Value

CacheDependencies

List of the cache keys on which the cached
data depends. When the cache item
changes, the cache of the control is cleared.
Each item (dependency) must be on one
line.

If you leave this property empty, default
dependencies will be used.

Please refer to the Caching topic to learn
more.

cms.user|all

CacheItemName Name of the cache item the control will use.

By setting this name dynamically, you can
achieve caching based on a URL parameter
or some other variable - simply enter the
value of the parameter.

If no value is set, the control stores its
content in the item named "URL|ControlID".

Please refer to the Caching topic to learn
more.

"mycachename" +
Request.QueryString["id"]
.ToString()

CacheMinutes Number of minutes the retrieved content is
cached for.

Zero indicates that the content will not be
cached.

-1 indicates that the site-level settings
should be used.

This parameter allows you to set up caching
of content so that it doesn't have to be
retrieved from the database each time a user
requests the page.

Kentico CMS 7.0 Controls76

© 2014 Kentico Software

Please refer to the Caching topic to learn
more.

ControlTagKey Overrides the generation of the SPAN tag
with a custom tag.

FilterControl Gets or sets the appropriate filter control
used to limit the data read by this control.

FilterName Gets or sets the code name of the
appropriate filter control used to limit the
data read by this control.

OrderBy Gets or sets the ORDER BY clause of the
SQL statement.

"NewsReleaseDate DESC"

SelectedColumns Database table columns that should be
loaded with documents, separated by
commas (,). Null or empty indicates that all
columns should be selected.

SiteName Specifies the code name of the site to be
used by the control.

StopProcessing Indicates if processing of the control should
be stopped and the control should not
retrieve or display any data.

TopN Specifies the maximum amount of rows that
should be selected.

WhereCondition Gets or sets the WHERE clause of the SQL
statement.

"ProductPrice > 100"

1.8.5 Navigation

1.8.5.1 Overview

The controls in this section provide functionality that helps users find their way around Kentico CMS
websites. This includes various types of menus, site maps and other basic navigation tools.

These controls are used by the web parts in the Navigation category.

All Kentico CMS documents have settings that influence how they are displayed in menus, which affects
the navigation controls in this section as well. Learn more about these settings in the Document menu
settings topic.

Most of the controls in this section use CSS classes to modify their design and several of them contain
the CSSPrefix property, which can be used to specify the class names. The Using the CSSPrefix
property topic clarifies how this property works.

Available controls:

CMSBreadCrumbs

Kentico CMS Controls 77

© 2014 Kentico Software

CMSListMenu
CMSMenu
CMSSiteMap
CMSTabControl
CMSTreeMenu
CMSTreeView

1.8.5.2 Document menu settings

Various navigation related settings can be configured for individual Kentico CMS documents. This can be
done in the CMS Desk interface in Content -> Edit -> ... select document ... -> Properties ->
Navigation.

These settings apply to CMS Navigation controls (and web parts) displaying the given document and
they override any conflicting property settings of the controls unless a property is set to ignore them.

The following settings are available:

Basic properties

Menu caption The name of the document that will be displayed in navigation. It may be
different than the document name. If no value is entered, the document
name is used.

Show in navigation Indicates if the document should be displayed by navigation controls
and web parts (in menus).

Kentico CMS 7.0 Controls78

© 2014 Kentico Software

Please note: the document is displayed in the navigation if all of the
following conditions are met:

1. The Show in navigation box is checked.
2. The document is published.
3. The type of the document matches the document types configured in

the appropriate navigation control (web part) - by default, only Page
(menu item) documents are displayed in navigation.

4. If you turn on the Check permissions property of the menu control,
the user must be allowed to read the given document so that it
appears in the navigation controls.

Show in site map Indicates if the document should be included in the website's Google
sitemap and displayed by the CMSSiteMap control.

Menu actions

Standard behavior Clicking the menu item redirects the user to the page as expected.

Inactive menu item Clicking the menu item doesn't cause any action — the item is
disabled. If selected, the Redirect to URL field appears, where you can
enter the URL of a page to which users will automatically be redirected
if they access the given page, e.g. through a link.

Javascript command The entered JavaScript command will be executed when this menu item
is clicked instead of standard redirection.

Example: alert('hello');return false;

URL redirection The user is redirected to the target location when they try to access the
given page.
Example: http://www.domain.com or ~/products.aspx

Macro expressions can be used in the URL redirection and JavaScript command fields. These
macros allow you to dynamically replace the given expression with specified values of the current menu
item, such as alias path, id path, node name.

You only need to place macros in format {%ColumnName%} into the property field. For example,
entering:

~/products.aspx?show=brand&aliaspath={%NodeAliasPath%}

Into the Redirect to URL field of e.g. the /MobileStore/Products/Nok ia document will cause users to be
redirected to:

 http://<domain>/products.aspx?show=brand&aliaspath=/MobileStore/Products/Nok ia

Please note: All apostrophes (') in the source data are escaped to \' so that they do not break
JavaScript.

Menu design

http://devnet.kentico.com/docs/7_0/devguide/google_site_map.htm
http://devnet.kentico.com/docs/7_0/devguide/google_site_map.htm

Kentico CMS Controls 79

© 2014 Kentico Software

The menu item design properties are available in three alternatives:

standard design
mouse-over design - style used when a user hovers their mouse over the menu item,
highlighted design - style applied if the page represented by the menu item is currently selected.

These values override the settings of individual navigation controls (web parts) unless their
ApplyMenuDesign property is set to false. The CSS styles defined in the CSS stylesheet are
overridden as well.

Please note: some of the following properties may not be applied to the menu control depending on the
menu control you are using.

Menu item style Style definition of the menu item. Values can be entered the same way
as when defining a CSS class in a stylesheet.
Sample value: color: orange; font-size: 140%

Menu item CSS class CSS class defined in the website's stylesheet.
Sample value: h1

Menu item left image Image that will be displayed next to the menu caption on the left side.
Sample values as below.

Menu item image Image that will be displayed in the menu instead of the menu caption.
You can enter either an absolute URL or a relative path in the content
tree.
Sample values: http://www.domain.com/image.gif

~/Images-(1)/icon.aspx

Menu item right image Image that will be displayed next to the menu caption on the right side.
Sample values as above.

1.8.5.3 Using the CSSPrefix property

The CSSPrefix property allows you to place multiple controls of the same type on the same page and
differentiate the CSS classes that they use by adding a prefix to the class names. Additionally, it can
also be used to specify the style of menu sub-items at any chosen level.

This property can be set for the following controls:

CMSListMenu
CMSMenu
CMSTreeMenu

Example

Here's an example of how to specify various styles for particular menu levels:

1. First, you need to specify the list of prefixes for particular levels using the CSSPrefix property:

CSSPrefix = "MainMenu;MainMenuSubMenu;MainMenuOtherLevels"

As you can see, the prefixes used for individual levels are separated by semicolons and every prefix

Kentico CMS 7.0 Controls80

© 2014 Kentico Software

represents a lower level starting from the main one (level 0). The last defined prefix represents all sub-
levels below it as well. If you only wish to differentiate the CSS classes used by multiple controls on the
same page, one prefix is sufficient.

2. Now define the following styles with the specified prefixes:

.MainMenuCMSMenu

... for menu control

.MainMenuCMSMenuItem
.MainMenuCMSMenuItemMouseUp

... etc. for the first level of the menu (level 0)

.MainMenuSubMenuCMSMenuItem
.MainMenuSubMenuCMSMenuItemMouseUp

... etc. for the second level of the menu (level 1)

.MainMenuOtherLevelsCMSMenuItem
.MainMenuOtherLevelsCMSMenuItemMouseUp

... etc. for all underlying levels of the menu (level 2 and all remaining sub-levels)

1.8.5.4 CMS navigation - common properties

The following properties provide general configuration options to many of the CMS Navigation controls.
Please be aware that certain controls only use some of these properties:

Property Name Description Sample Value

ApplyMenuDesign
Indicates whether the document menu
settings for Menu design should be applied
to this control. True by default.

Columns Contains the names of columns which
should be loaded with the documents (menu
items). Only the columns contained in the
DefaultColumns property are loaded by
default.

If you need some other column to be loaded
as well, please add its name into this
property.

"DocumentPageTitle,
DocumentPageKeywords"

CSSPrefix Specifies the prefix of standard navigation
control CSS classes. You can also use
several values separated by a semicolon (;)
for particular levels. Learn more at Using the
CSSPrefix property.

"main;submenu1;
submenu2"

HideControlForZeroRow
s

Indicates whether the control should be
hidden when no data is loaded. Default value
is False.

HighlightAllItemsInPath Indicates whether all items in the unfolded
path should be displayed as highlighted.

Kentico CMS Controls 81

© 2014 Kentico Software

SubmenuIndicator Contains the path to an image that will be
displayed next to every item that contains
sub-items.

UseAlternatingStyles Indicates whether alternating styles should
be used for even and odd items on the same
menu level.

UseItemImagesForHigli
ghtedItem

Indicates whether the item image should be
used if the highlighted image is not
specified.

WordWrap Indicates whether text displayed by the
control should use word wrapping or be
replaced by 'nbsp' entities if it is too long.

ZeroRowsText Text to be shown when the control is hidden
by the HideControlForZeroRows property.

"No records found."

1.8.5.5 CMSBreadCrumbs

1.8.5.5.1 Overview

The CMSBreadCrumbs control allows you to display the current user's position within a website in
format:

Item 1 > Item 2 > Item 3

where Item X is the name of the document in the path.

The portal engine equivalent of the CMSBreadCrumbs control is the Navigation -> Breadcrumbs web
part.

The following topics are available to help you familiarize yourself with the CMSBreadCrumbs control:

Getting started - contains a quick step-by-step tutorial that allows you to learn the basics of using
the control
Configuration - describes and explains the properties that can be set for the control
Appearance and styling - lists which CSS classes can be used with the control and how its
appearance can be modified

1.8.5.5.2 Getting started

The following is a step-by-step tutorial that will show you how to display a user's current location within
the structure of a website using the CMSBreadCrumbs control:

1. Create a new Web form and use it as a page template according to the guide in the Using ASPX
page templates topic.

2. Switch to its Design tab and drag and drop a CMSBreadCrumbs control from the toolbox onto the
form.

3. Save the changes to the web form. Now if you look at the page using the created template on some

http://devnet.kentico.com/docs/7_0/webparts/breadcrumbs_overview.htm

Kentico CMS 7.0 Controls82

© 2014 Kentico Software

website, the user's position within the website will be displayed as is shown in the following image:

1.8.5.5.3 Configuration

The following properties of the CMSBreadCrumbs control can be set or used in the API:

All of the common properties from:

CMS controls - common properties
CMS navigation - common properties

In addition, the following properties are available:

Property Name Description Sample Value

BreadCrumbSeparator
Character(s) that separate the bread
crumbs. You can use HTML code here.

">>"

BreadCrumbSeparatorR
TL

Character(s) that separate the bread crumbs
in RTL mode. You can use HTML code here.

"<<"

DefaultPath Sets a default path that will be displayed in
the breadcrumbs if no path is provided from
the current page context.

"/home"

EncodeName Indicates whether the items in the
breadcrumbs should be HTML encoded.

IgnoreShowInNavigation The ShowInNavigation document property
is ignored if this property is true.

LoadDataAutomaticaly Indicates whether data for the control should
be loaded automatically. By default, the data
is loaded automatically.

If you set this property to false, you can
enter a custom DataSet into the
DataSource property and then call the
ReloadData(false) method.

RenderedHTML Allows you to get or set the HTML code
rendered by the control.

You need to set this property before the
Render event - e.g. in the OnLoad event.

RenderLinkTitle Specifies if the document name should be
rendered as a TITLE tag of links (for better
accessibility).

ShowCurrentItem Indicates if the current (last) item should be
displayed. True by default.

Kentico CMS Controls 83

© 2014 Kentico Software

ShowCurrentItemAsLink Indicates if the current (last) item should be
displayed as a link. False by default.

StartingPath Selects the document from which the path in
the breadcrumbs will be displayed. Enter /
(root document) to have the breadcrumbs
display the full website path.

For example, if you set this value to /News
and go to /News/Events/2010, the
breadcrumbs will display only Events ->
2010.

"/products"

UrlTarget Specifies the target frame for all links
generated by the breadcrumbs.

"_blank"

UseRtlBehaviour Indicates whether the bread crumbs should
be rendered in the RTL direction for specific
languages.

Mentioned method:

Method Name Description

ReloadData(bool forceLoad)

Reloads the data.

If the forceLoad parameter is set to false and a value is assigned to
the DataSource property, the properties of the CMSBreadCrumbs
control are not used and only the data from the DataSource is loaded.

1.8.5.5.4 Appearance and styling

The appearance of the CMSBreadCrumbs control is determined by the CSS classes it uses and by
some of its properties.

You can use the following CSS classes to modify the design of the control:

Class Name Description

CMSBreadCrumbsLink Link (A element) in the bread crumbs path.

CMSBreadCrumbsCurrentIt
em

Style of the last item representing the current location.

The recommended place to define these classes is in a stylesheet in the Kentico CMS administration
interface at Site Manager -> Development -> CSS stylesheets. These stylesheets can be applied to
individual documents (pages) that contain the control in CMS Desk -> Content -> Edit -> Properties ->
General -> CSS stylesheet.

Kentico CMS 7.0 Controls84

© 2014 Kentico Software

1.8.5.6 CMSListMenu

1.8.5.6.1 Overview

The CMSListMenu control allows you to create a large variety of menus. It renders and tags
and the design depends only on your CSS style sheet. This menu control provides several advantages:

It's based only on CSS styles which makes it highly configurable.
It renders shorter HTML code than the CMSMenu control.
It's fully XHTML compliant.
The list-based menu is better accessible.
You can create the drop-down menu using the list-based menu and CSS without almost any
JavaScript.
It automatically displays standard UL/LI listing with links if the browser does not support CSS styles
so that the user can still navigate on the website.

However, it requires advanced knowledge of CSS as it doesn't render any specific layout by itself.

It allows you to display part of the CMS menu structure specified using its Path, MaxRelativeLevel,
ClassNames, CultureCode and WhereCondition properties.

The portal engine equivalent of the CMSListMenu control is the Navigation -> CSS list menu web part.

The following topics are available to help you familiarize yourself with the CMSListMenu control:

Getting started - contains a quick step-by-step tutorial that allows you to learn the basics of using
the control
Configuration - describes and explains the properties that can be set for the control
Appearance and styling - describes and shows examples of how CSS styles can be used with the
control

1.8.5.6.2 Getting started

The following is a step-by-step tutorial that will show you how to display a simple menu without any
styles containing CMS content using the CMSListMenu control:

1. Create a new Web form somewhere in your website installation directory.

2. Switch to its Design tab, drag and drop a CMSListMenu control from the toolbox onto the form.

3. Switch to the Source tab. The code of the CMSListMenu control should look like this:

<cms:CMSListMenu ID="CMSListMenu1" runat="server" />

Now replace the DOCTYPE above the <HTML> element with the following one:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 Strict//EN" "http://www.w3.org/TR/

xhtml1/DTD/xhtml1-strict.dtd">

4. Save the changes to the web form. Now right-click it in the Solution explorer and select View in

http://devnet.kentico.com/docs/7_0/webparts/cmslistmenu_overview.htm

Kentico CMS Controls 85

© 2014 Kentico Software

Browser. The resulting page should display a UL/LI based menu like this:

To see how more advanced menus can be rendered using different CSS styles, continue this tutorial in
one of the following topics:

Creating a horizontal drop-down menu using CSS styles
Creating a vertical drop-down menu using CSS styles

1.8.5.6.3 Configuration

The following properties of the CMSListMenu control can be set or used in the API:

All of the common properties from:

CMS controls - common properties
CMS navigation - common properties

In addition, the following properties are available:

Property Name Description Sample Value

DisplayHighlightedItem
AsLink

Indicates whether the highlighted item
should be displayed as a link.

DisplayOnlySelectedPa
th

Indicates whether all sub-menus should be
displayed or just the sub-menu under the
highlighted (selected) item.

EncodeMenuCaption Indicates whether HTML encoding should be

Kentico CMS 7.0 Controls86

© 2014 Kentico Software

applied to the captions of menu items.
Useful only in special cases where the
names of the displayed documents contain
HTML code.

FirstItemCssClass Specifies the CSS class for the first item on
every menu level.

"ListMenuFirstItem"

HighlightedNodePath Path of the item that should be highlighted
as if it were selected. If you omit this value,
the control automatically uses the current
alias path from the aliaspath querystring
parameter.

"/products/PDAs"

HoverCSSClassName Name of the surrounding CSS class that is
used to define styles for the hover effect if
you want to render a drop-down menu.

"Horizontal"

ItemIdPrefix Prefix placed before each item ID. You can
use it to keep IDs unique if you have several
CMSListMenu controls on the same page.

"submenu"

LastItemCssClass Specifies the CSS class for the last item on
every menu level.

"ListMenuLastItem"

LoadDataAutomatically Indicates whether data for the control should
be loaded automatically. By default, the data
is loaded automatically.

If you set this property to false, you can
enter a custom DataSet into the
DataSource property and then call the
ReloadData(false) method.

OnMouseOutScript OnMouseOut script for menu items. You can
use macro expressions here.

OnMouseOverScript OnMouseOver script for menu items. You
can use macro expressions here.

OrderBy Gets or sets the ORDER BY clause of the
SQL statement.

Please be aware that it is necessary for the
root of the displayed tree (or sub-tree) to be
first in the resulting order, otherwise all
documents may not be displayed correctly.
This can be ensured by having the value of
this property start with the NodeLevel
column, such as in the sample value.

"NodeLevel, NodeOrder"

RenderCssClasses Indicates whether CSS classes should be
rendered for every element. If set to false,
only the first and last item of a menu level
will use a CSS class.

Kentico CMS Controls 87

© 2014 Kentico Software

RenderedHTML Allows you to get or set the HTML code
rendered by the control.

You need to set this property before the
Render event - e.g. in the OnLoad event.

RenderImageAlt Indicates whether the ALT attribute should
be rendered for images used in the menu (for
XHTML compatibility).

RenderItemID Indicates whether a unique ID should be
rendered for every menu item.

RenderLinkTitle Specifies if the document name should be
rendered as a TITLE tag of links (for better
accessibility).

UrlTarget Specifies the target frame for all URLs. "_blank"

Mentioned method:

Method Name Description

ReloadData(bool forceLoad)

Reloads the data.

If the forceLoad parameter is set to false and a value is assigned to
the DataSource property, the properties of the CMSListMenu control
are not used and only the data from the DataSource is loaded.

1.8.5.6.4 Appearance and styling

1.8.5.6.4.1 General

The appearance of the CMSListMenu control is determined by the CSS classes it uses and by some of
its properties.

The following properties can be used to specify used CSS classes:

Property Name Description

FirstItemCssClass Specifies the CSS class for the first item on every menu level.

HoverCSSClassName Name of the surrounding CSS class that is used to define styles for the
hover effect if you want to render a drop-down menu.

LastItemCssClass Specifies CSS class for the last item on every menu level.

You can also modify the design using the following CSS classes if the RenderCssClasses property is
set to true:

Class Name Description

CMSListMenuUL UL element style

Kentico CMS 7.0 Controls88

© 2014 Kentico Software

CMSListMenuLI LI element style

CMSListMenuLink A element style

CMSListMenuHighlightedLI LI element style of a highlighted item

The recommended place to define these classes is in a stylesheet in the Kentico CMS administration
interface at Site Manager -> Development -> CSS stylesheets. These stylesheets can be applied to
individual documents (pages) that contain the control in CMS Desk -> Content -> Edit -> Properties ->
General -> CSS stylesheet.

Please refer to Using the CSSPrefix property to learn how to add prefixes to these classes to customize
items at any menu level.

The name of the CSS class used to render a drop-down menu must be identical to the value entered into
the HoverCSSClassName property. Please be aware that this is case sensitive.

For examples of CSS styles that render a drop-down menu, please see the following topics:

Creating a horizontal drop-down menu using CSS styles
Creating a vertical drop-down menu using CSS styles

1.8.5.6.4.2 Creating a horizontal drop-dow n menu using CSS styles

This topic shows an example of how the CMSListMenu control can render a horizontal drop-down menu.
If you wish to create this example for yourself, please follow the tutorial in the Getting started topic, then
continue with the following steps:

1. Set the HoverCSSClassName property value to: Horizontal

The code of the CMSListMenu control should look like this:

<cms:CMSListMenu ID="CMSListMenu1" runat="server" HoverCSSClassName="Horizontal" /

>

2. Add the following style definitions inside the <head> element:

<style type="text/css" media="screen">

/* Horizontal menu class definitions*/

.Horizontal { BORDER-RIGHT: #c2c2c2 1px solid; BORDER-TOP: #c2c2c2 1px solid;

FONT-SIZE: 12px; FLOAT: left; BORDER-LEFT: #c2c2c2 1px solid; WIDTH: 100%; BORDER-

BOTTOM: #c2c2c2 1px solid; FONT-FAMILY: Arial; BACKGROUND-COLOR: #e2e2e2 }

.Horizontal UL { PADDING-RIGHT: 0px; PADDING-LEFT: 0px; PADDING-BOTTOM: 0px;

MARGIN: 0px; WIDTH: 100%; PADDING-TOP: 0px; LIST-STYLE-TYPE: none }

.Horizontal LI { BORDER-RIGHT: #e2e2e2 1px solid; PADDING-RIGHT: 0px; BORDER-TOP:

#e2e2e2 1px solid; DISPLAY: inline; PADDING-LEFT: 0px; FLOAT: left; PADDING-

BOTTOM: 0px; BORDER-LEFT: #e2e2e2 1px solid; PADDING-TOP: 0px; BORDER-BOTTOM:

#e2e2e2 1px solid }

.Horizontal A { PADDING-RIGHT: 3px; DISPLAY: block; PADDING-LEFT: 3px; PADDING-

BOTTOM: 2px; MARGIN: 0px; WIDTH: 112px; COLOR: black; PADDING-TOP: 2px;

Kentico CMS Controls 89

© 2014 Kentico Software

BACKGROUND-COLOR: #e2e2e2; TEXT-DECORATION: none }

.Horizontal A:hover { BACKGROUND: #808080 no-repeat right bottom; COLOR: white }

.Horizontal UL UL { Z-INDEX: 500; WIDTH: 120px; BORDER-BOTTOM: #c2c2c2 2px solid;

POSITION: absolute }

.Horizontal UL UL LI { CLEAR: left; DISPLAY: block; POSITION: relative }

.Horizontal UL UL UL { BORDER-RIGHT: #c2c2c2 2px solid; LEFT: 100%; BORDER-BOTTOM:

white 0px solid; TOP: -1px }

.Horizontal UL UL { DISPLAY: none }

.Horizontal UL LI:hover UL UL { DISPLAY: none }

.Horizontal UL UL LI:hover UL UL { DISPLAY: none }

.Horizontal UL LI:hover UL { DISPLAY: block }

.Horizontal UL UL LI:hover UL { DISPLAY: block }

.Horizontal UL UL UL LI:hover UL { DISPLAY: block }

</style>

This modifies the CSS style of the menu so that it displays a horizontal drop-down menu.

The classes are defined in the <head> element only for this quick example, if you wish to use the
control on a Kentico CMS website, it is recommended to define these classes in the stylesheet used by
the website or specific page via the administration interface in Site Manager -> Development -> CSS
stylesheets.

3. Save the changes to the web form. Now right-click it in the Solution explorer and select View in
Browser. The resulting page should display a menu like this:

1.8.5.6.4.3 Creating a vertical drop-dow n menu using CSS styles

This topic shows an example of how the CMSListMenu control can render a vertical drop-down menu. If
you wish to create this example for yourself, please follow the tutorial in the Getting started topic, then
continue with the following steps:

1. Set the HoverCSSClassName property value to: Vertical

The code of the CMSListMenu control should look like this:

<cms:CMSListMenu ID="CMSListMenu1" runat="server" HoverCSSClassName="Vertical" />

2. Add the following style definitions inside the <head> element:

<style type="text/css" media="screen">

/* Vertical menu class definitions*/

Kentico CMS 7.0 Controls90

© 2014 Kentico Software

.Vertical { BORDER-RIGHT: #c2c2c2 1px solid; BORDER-TOP: #c2c2c2 1px solid; FONT-

SIZE: 12px; BORDER-LEFT: #c2c2c2 1px solid; WIDTH: 150px; BORDER-BOTTOM: #c2c2c2

1px solid; FONT-FAMILY: Arial; BACKGROUND-COLOR: #e2e2e2 }

.Vertical UL { PADDING-RIGHT: 0px; PADDING-LEFT: 0px; PADDING-BOTTOM: 0px; MARGIN:

0px; PADDING-TOP: 0px; LIST-STYLE-TYPE: none }

.Vertical LI { POSITION: relative; FLOAT: left; WIDTH: 100% }

.Vertical A { PADDING-RIGHT: 0px; BACKGROUND-POSITION: 0px 50%; DISPLAY: block;

PADDING-LEFT: 10px; PADDING-BOTTOM: 2px; MARGIN: 0px; WIDTH: 140px; COLOR: black;

PADDING-TOP: 2px; BACKGROUND-REPEAT: no-repeat; BACKGROUND-COLOR: #e2e2e2; TEXT-

DECORATION: none }

.Vertical A:hover { BACKGROUND: #808080 no-repeat 0px 50%; COLOR: white }

.Vertical UL UL { BORDER-RIGHT: #c2c2c2 1px solid; BORDER-TOP: #c2c2c2 1px solid;

Z-INDEX: 100; LEFT: 100%; BORDER-LEFT: #c2c2c2 1px solid; WIDTH: 100%; BORDER-

BOTTOM: #c2c2c2 1px solid; POSITION: absolute; TOP: -1px }

#Vertical1 UL { DISPLAY: none }

#Vertical1 LI:hover UL UL { DISPLAY: none }

#Vertical1 UL LI:hover UL UL { DISPLAY: none }

#Vertical1 LI:hover UL { DISPLAY: block }

#Vertical1 UL LI:hover UL { DISPLAY: block }

#Vertical1 UL UL LI:hover UL { DISPLAY: block }

</style>

This modifies the CSS style of the menu so that it displays a vertical drop-down menu.

The classes are defined in the <head> element only for this quick example, if you wish to use the
control on a Kentico CMS website, it is recommended to define these classes in the stylesheet used by
the website or specific page via the administration interface in Site Manager -> Development -> CSS
stylesheets.

3. Save the changes to the web form. Now right-click it in the Solution explorer and select View in
Browser. The resulting page should display a menu like this:

1.8.5.7 CMSMenu

1.8.5.7.1 Overview

The CMSMenu control allows you to display a multi-level DHTML menu based on data from Kentico
CMS.

It allows you to display part of the CMS menu structure specified using its Path, MaxRelativeLevel,
ClassNames, CultureCode and WhereCondition properties.

The following image is an example of how the CMSMenu control looks with the Horizontal Layout,
including how menu item levels are rendered:

Kentico CMS Controls 91

© 2014 Kentico Software

The portal engine equivalent of the CMSMenu control is the Navigation -> Drop-down menu web part.

The following topics are available to help you familiarize yourself with the CMSMenu control:

Getting started - contains a step-by-step tutorial that allows you to learn the basics of using the
control
Configuration - describes and explains the properties that can be set for the control
Appearance and styling - lists which CSS classes can be used with the control and how its
appearance can be modified

1.8.5.7.2 Getting started

The following is a step-by-step tutorial that will show you how to display a simple DHTML menu
containing CMS content using the CMSMenu control:

1. Create a new Web form somewhere in your website installation directory.

2. Switch to its Design tab, drag and drop a CMSMenu control from the toolbox onto the form and set
its following properties:

Layout: Horizontal
ClassNames: CMS.MenuItem;CMS.Software
CSSPrefix: Main;Sub

This tells the control to use a horizontal layout and which types of documents (pages) should be
included. In this example, the menu will only display standard pages and software product types, but
you can specify any other document types as needed. It also sets the CSS classes that should be used
for the main menu and sub-menus. These classes will be defined in the next step. Please refer to Using
the CSSPrefix property for more information.

3. Switch to the Source tab. The code of the CMSMenu control should look like this:

<cms:CMSMenu ID="CMSMenu1" runat="server" Layout="Horizontal"

ClassNames="CMS.MenuItem;CMS.Software"

CSSPrefix="Main;Sub" />

http://devnet.kentico.com/docs/7_0/webparts/cmsmenu_overview.htm

Kentico CMS 7.0 Controls92

© 2014 Kentico Software

Now add the following code between the tags of the <head> element:

<style type="text/css">

/* horizontal menu - main menu */

.MainCMSMenu { BORDER-RIGHT: 0px; TABLE-LAYOUT: fixed; BORDER-TOP: 0px; BORDER-

LEFT: 0px; WIDTH: 100px; BORDER-BOTTOM: 0px; BACKGROUND-COLOR: #b8bafe }

.MainCMSMenuItem { PADDING-RIGHT: 15px; PADDING-LEFT: 5px; FONT-SIZE: 10pt;

PADDING-BOTTOM: 2px; WIDTH: 100px; COLOR: black; PADDING-TOP: 2px; FONT-FAMILY:

verdana }

.MainCMSMenuItemMouseUp { PADDING-RIGHT: 15px; PADDING-LEFT: 5px; FONT-SIZE: 10pt;

PADDING-BOTTOM: 2px; WIDTH: 100px; COLOR: black; PADDING-TOP: 2px; FONT-FAMILY:

verdana }

.MainCMSMenuItemMouseOver { PADDING-RIGHT: 15px; PADDING-LEFT: 5px; FONT-SIZE:

10pt; PADDING-BOTTOM: 2px; WIDTH: 100px; CURSOR: hand; COLOR: white; PADDING-TOP:

2px; FONT-FAMILY: verdana; BACKGROUND-COLOR: #4a3c8c }

.MainCMSMenuItemMouseDown { PADDING-RIGHT: 15px; PADDING-LEFT: 5px; FONT-SIZE:

10pt; PADDING-BOTTOM: 2px; WIDTH: 100px; COLOR: black; PADDING-TOP: 2px; FONT-

FAMILY: verdana }

.MainCMSMenuHighlightedMenuItem { PADDING-RIGHT: 15px; PADDING-LEFT: 5px; FONT-

SIZE: 10pt; PADDING-BOTTOM: 2px; WIDTH: 100px; COLOR: black; PADDING-TOP: 2px;

FONT-FAMILY: verdana; BACKGROUND-COLOR: #ff7315 }

.MainCMSMenuHighlightedMenuItemMouseUp { PADDING-RIGHT: 15px; PADDING-LEFT: 5px;

FONT-SIZE: 10pt; PADDING-BOTTOM: 2px; WIDTH: 100px; CURSOR: hand; COLOR: black;

PADDING-TOP: 2px; FONT-FAMILY: verdana; BACKGROUND-COLOR: #ff7315 }

.MainCMSMenuHighlightedMenuItemMouseOver { PADDING-RIGHT: 15px; PADDING-LEFT: 5px;

FONT-SIZE: 10pt; PADDING-BOTTOM: 2px; WIDTH: 100px; CURSOR: hand; COLOR: black;

PADDING-TOP: 2px; FONT-FAMILY: verdana; BACKGROUND-COLOR: #ff7315 }

.MainCMSMenuHighlightedMenuItemMouseDown { PADDING-RIGHT: 15px; PADDING-LEFT: 5px;

FONT-SIZE: 10pt; PADDING-BOTTOM: 2px; WIDTH: 100px; CURSOR: hand; COLOR: black;

PADDING-TOP: 2px; FONT-FAMILY: verdana; BACKGROUND-COLOR: #ff7315 }

/* horizontal menu - sub-menus */

.SubCMSMenuItem { PADDING-RIGHT: 15px; PADDING-LEFT: 5px; FONT-SIZE: 10pt;

BACKGROUND: #e7e7ff; PADDING-BOTTOM: 2px; WIDTH: 100px; COLOR: black; PADDING-TOP:

2px; FONT-FAMILY: verdana }

.SubCMSMenuItemMouseUp { PADDING-RIGHT: 15px; PADDING-LEFT: 5px; FONT-SIZE: 10pt;

PADDING-BOTTOM: 2px; WIDTH: 100px; COLOR: black; PADDING-TOP: 2px; FONT-FAMILY:

verdana }

.SubCMSMenuItemMouseOver { PADDING-RIGHT: 15px; PADDING-LEFT: 5px; FONT-SIZE:

10pt; PADDING-BOTTOM: 2px; WIDTH: 100px; CURSOR: hand; COLOR: white; PADDING-TOP:

2px; FONT-FAMILY: verdana; BACKGROUND-COLOR: green }

.SubCMSMenuItemMouseDown { PADDING-RIGHT: 15px; PADDING-LEFT: 5px; FONT-SIZE:

10pt; PADDING-BOTTOM: 2px; WIDTH: 100px; COLOR: black; PADDING-TOP: 2px; FONT-

FAMILY: verdana }

.SubCMSMenuHighlightedMenuItem { PADDING-RIGHT: 15px; PADDING-LEFT: 5px; FONT-

SIZE: 10pt; PADDING-BOTTOM: 2px; WIDTH: 100px; COLOR: black; PADDING-TOP: 2px;

FONT-FAMILY: verdana; BACKGROUND-COLOR: #ff7315 }

.SubCMSMenuHighlightedMenuItemMouseUp { PADDING-RIGHT: 15px; PADDING-LEFT: 5px;

FONT-SIZE: 10pt; PADDING-BOTTOM: 2px; WIDTH: 100px; CURSOR: hand; COLOR: black;

PADDING-TOP: 2px; FONT-FAMILY: verdana; BACKGROUND-COLOR: #ff7315 }

.SubCMSMenuHighlightedMenuItemMouseOver { PADDING-RIGHT: 15px; PADDING-LEFT: 5px;

FONT-SIZE: 10pt; PADDING-BOTTOM: 2px; WIDTH: 100px; CURSOR: hand; COLOR: black;

PADDING-TOP: 2px; FONT-FAMILY: verdana; BACKGROUND-COLOR: #ff7315 }

.SubCMSMenuHighlightedMenuItemMouseDown { PADDING-RIGHT: 15px; PADDING-LEFT: 5px;

FONT-SIZE: 10pt; PADDING-BOTTOM: 2px; WIDTH: 100px; CURSOR: hand; COLOR: black;

PADDING-TOP: 2px; FONT-FAMILY: verdana; BACKGROUND-COLOR: #ff7315 }

Kentico CMS Controls 93

© 2014 Kentico Software

</style>

This sets the CSS styles that will modify the appearance of the menu. The CMSMenu control renders a
menu even without any CSS classes specified, but it is extremely basic and not very user friendly. You
can find out what individual CSS classes affect in the Appearance and styling topic.

The classes are defined in the <head> element only for this quick example, if you wish to use the
control on a Kentico CMS website, it is recommended to define these classes in the stylesheet used by
the website or specific page via the administration interface in Site Manager -> Development -> CSS
stylesheets.

4. Save the changes to the web form. Now right-click it in the Solution explorer and select View in
Browser. The resulting page should look like this:

1.8.5.7.3 Configuration

The following properties of the CMSMenu control can be set or used in the API:

All of the common properties from:

CMS controls - common properties
CMS navigation - common properties

In addition, the following properties are available:

Property Name Description Sample Value

Cursor
Determines the mouse cursor used when
controlling the menu.

"Default"
"Pointer"

EnableMouseUpDownCl
ass

Indicates whether the menu should render
different CSS classes for mouse-up and
mouse-down events.

EnableRTLBehaviour Indicates whether a right-to-left layout should
be used on documents displayed in a RTL
culture.

EncodeMenuCaption Indicates whether HTML encoding should be
applied to the captions of menu items.
Useful only in special cases where the

Kentico CMS 7.0 Controls94

© 2014 Kentico Software

names of the displayed documents contain
HTML code.

ExternalScriptPath Path of the external .js file with skmMenu
scripts. The default path is ~/cmsscripts/
skmmenu.js.

"~/myscripts/skmmenu.js"

HighlightedMenuItem This property can be used to get the
currently highlighted menu item and set its
CSS classes.

HighlightedNodePath Path of the item that should be highlighted
as if it were selected. If you omit this value,
the control automatically uses the current
alias path from the aliaspath querystring
parameter.

"/products/PDAs"

Layout Determines the layout of the menu. "Vertical"
"Horizontal"

MenuControl This property can be used to access the
menu (skmMenu) control and its CSS
classes and properties.

Padding Padding of the CMSMenu table.

RenderImageAlt Indicates whether the ALT attribute should
be rendered for images used in the menu (for
XHTML compatibility).

RenderItemName Indicates if the ItemName attribute of menu
items should be rendered in the output
HTML code.

SeparatorCssClass CSS class of the separator cell (TD element)
for the top menu level.

SeparatorHeight Height of the separator placed between
menu items of the top menu level.

SeparatorText Text of the separator placed between menu
items of the first menu level.

"|"

Spacing Spacing of the CMSMenu table.

Method Name Description

ReloadData(bool forceLoad)

Reloads the data.

If the forceLoad parameter is set to false and a value is assigned to
the DataSource property, the properties of the CMSMenu control are
not used and only the data from the DataSource is loaded.

Kentico CMS Controls 95

© 2014 Kentico Software

1.8.5.7.4 Appearance and styling

The appearance of the CMSMenu control is determined by the CSS classes it uses and by some of its
properties.

You can also use the following CSS classes:

Class Name Description

CMSMenu CSS class of the menu table.

CMSMenuItem CSS class of menu items.

CMSMenuItemMouseDown CSS class of menu items when the mouse button is down.

CMSMenuItemMouseOver CSS class of a menu item when a user moves the mouse cursor over it.

CMSMenuItemMouseUp CSS class of menu items when the mouse button is released.

CMSMenuHighlightedMenuI
tem

CSS class of highlighted menu items.

CMSMenuHighlightedMenuI
temMouseDown

CSS class of highlighted menu items when the mouse button is down.

CMSMenuHighlightedMenuI
temMouseOver

CSS class of a highlighted menu item when a user moves the mouse
cursor over it.

CMSMenuHighlightedMenuI
temMouseUp

CSS class of highlighted menu items when the mouse button is
released.

The recommended place to define these classes is in a stylesheet in the Kentico CMS administration
interface at Site Manager -> Development -> CSS stylesheets. These stylesheets can be applied to
individual documents (pages) that contain the control in CMS Desk -> Content -> Edit -> Properties ->
General -> CSS stylesheet.

Please refer to Using the CSSPrefix property to learn how to add prefixes to these classes to customize
items at any menu level.

1.8.5.8 CMSSiteMap

1.8.5.8.1 Overview

The CMSSiteMap control allows you to display the whole navigation structure of a website or just its
specified part. It reads CMS documents and renders their structure as a site map.

It allows you to display part of the CMS menu structure specified using its Path, MaxRelativeLevel,
ClassNames, CultureCode and WhereCondition properties.

Only documents that have their Show in sitemap setting enabled in CMS Desk -> Content -> Edit ->
Properties -> Navigation will be displayed by this control.

The portal engine equivalent of the CMSSiteMap control is the Navigation -> Site map web part.

The following topics are available to help you familiarize yourself with the CMSSiteMap control:

http://devnet.kentico.com/docs/7_0/webparts/cmssitemap_overview.htm

Kentico CMS 7.0 Controls96

© 2014 Kentico Software

Getting started - contains a quick step-by-step tutorial that allows you to learn the basics of using
the control
Configuration - describes and explains the properties that can be set for the control
Appearance and styling - describes and shows an example of how CSS styles can be used with the
control

1.8.5.8.2 Getting started

The following is a step-by-step tutorial that will show you how to display a site map based on CMS
content using the CMSSiteMap control:

1. Create a new Web form somewhere in your website installation directory.

2. Switch to its Design tab, drag and drop a CMSSiteMap control from the toolbox onto the form.

3. Switch to the Source tab. The code of the CMSSiteMap control should look like this:

<cms:CMSSiteMap ID="CMSSiteMap1" runat="server" />

4. Save the changes to the web form. Now right-click it in the Solution explorer and select View in
Browser. The resulting page should look like this:

Continue this tutorial in the Appearance and styling topic to see how CSS styles can be applied to the
CMSSiteMap control.

Kentico CMS Controls 97

© 2014 Kentico Software

1.8.5.8.3 Configuration

The following properties of the CMSSiteMap control can be set or used in the API:

All of the common properties from:

CMS controls - common properties
CMS navigation - common properties

In addition, the following properties are available:

Property Name Description Sample Value

ApplyMenuInactivation If checked, documents in the site map that
are set as Inactive menu items will not be
rendered as links. This setting can be
configured for individual documents in CMS
Desk -> Content -> Edit -> Properties ->
Navigation.

EncodeMenuCaption Indicates whether HTML encoding should be
applied to the captions of site map items.
Useful only in special cases where the
names of the displayed documents contain
HTML code.

LoadDataAutomaticaly Indicates whether data for the control should
be loaded automatically. This is performed
by default.

If you set this property to false, you can
enter a custom DataSet into the
DataSource property and then call the
ReloadData(false) method.

OrderBy Gets or sets the ORDER BY clause of the
SQL statement.

Please be aware that it is necessary for the
root of the displayed tree (or sub-tree) to be
first in the resulting order, otherwise all
documents may not be displayed correctly.
This can be ensured by having the value of
this property start with the NodeLevel
column, such as in the sample value.

"NodeLevel, NodeOrder"

RenderedHTML Allows you to get or set the HTML code
rendered by the control.

You need to set this property before the
Render event - e.g. in the OnLoad event.

RenderLinkTitle If enabled, the site map will render document
names as Title attributes (tooltips) for all
links. This can improve the accessibility of

Kentico CMS 7.0 Controls98

© 2014 Kentico Software

your website.

UrlTarget Specifies the target frame for all links in the
site map.

"_blank"

Mentioned method:

Method Name Description

ReloadData(bool forceLoad)

Reloads the data.

If the forceLoad parameter is set to false and a value is assigned to
the DataSource property, the properties of the CMSSiteMap control
are not used and only the data from the DataSource is used.

1.8.5.8.4 Appearance and styling

The appearance of the CMSSiteMap control is determined by the CSS classes it uses and by some of
its properties.

You can use the following CSS classes to modify the design of the control:

Class Name Description

CMSSiteMapList The UL element in the site map.

CMSSiteMapListItem The LI element in the site map.

CMSSiteMapLink Link (A element) in the site map.

The recommended place to define these classes is in a stylesheet in the Kentico CMS administration
interface at Site Manager -> Development -> CSS stylesheets. These stylesheets can be applied to
individual documents (pages) that contain the control in CMS Desk -> Content -> Edit -> Properties ->
General -> CSS stylesheet.

Example

The following is an example of how CSS styles can be applied to a CMSSiteMap control. If you wish to
create this example for yourself, please follow the tutorial in the Getting started topic, then continue with
the following steps:

1. Add the following style definitions inside the <head> element:

<style type="text/css">

/* Site map class definitions */

.CMSSiteMapList { }

.CMSSiteMapListItem { list-style-type: square; }

.CMSSiteMapLink { color: #C34C17; text-decoration:none; }

</style>

Kentico CMS Controls 99

© 2014 Kentico Software

This will modify the appearance of the site map.

2. Save the changes to the web form. Now right-click it in the Solution explorer and select View in
Browser. The resulting page should look like this:

1.8.5.9 CMSTabControl

1.8.5.9.1 Overview

The CMSTabControl control allows you to display a one-level tab menu based on data from Kentico
CMS. It reads the specified documents and renders the menu according to their values.

It allows you to display part of the CMS menu structure specified using its Path, MaxRelativeLevel,
ClassNames, CultureCode and WhereCondition properties.

It is derived from the BasicTabControl control, but it doesn't require any additional code to work and is
extended to contain a set of common properties for CMS navigation controls.

The portal engine equivalent of the CMSTabControl control is the Navigation -> Tab menu web part.

The following topics are available to help you familiarize yourself with the CMSTabControl control:

Getting started - contains a step-by-step tutorial that allows you to learn the basics of using the
control
Configuration - describes and explains the properties that can be set for the control
Appearance and styling - describes and shows an example of how CSS styles can be used with the
control

1.8.5.9.2 Getting started

The following is a step-by-step tutorial that will show you how to display a tab menu based on CMS
content using the CMSTabControl control:

1. Create a new Web form somewhere in your website installation directory.

http://devnet.kentico.com/docs/7_0/webparts/cmstabcontrol_overview.htm

Kentico CMS 7.0 Controls100

© 2014 Kentico Software

2. Switch to its Design tab, drag and drop a CMSTabControl control from the toolbox onto the form and
set its following properties:

MaxRelativeLevel: 1
SelectFirstItemByDefault: True

This makes sure that only documents from the first level are displayed and that the first tab is selected
by default.

3. Switch to the Source tab. The code of the CMSTabControl control should look like this:

<cms:CMSTabControl ID="CMSTabControl1" runat="server" MaxRelativeLevel="1"

SelectFirstItemByDefault="True" />

Now add the following code between the tags of the <head> element:

<style type="text/css">

/* Tab menu class definitions */

.TabControlTable { FONT-SIZE: 14px; FONT-FAMILY: Arial,Verdana }

.TabControlRow { }

.TabControl { BORDER-RIGHT: black 1px solid; BORDER-TOP: black 1px solid; FONT-

WEIGHT: bold; BACKGROUND: #e7e7ff; BORDER-LEFT: black 1px solid; CURSOR: hand;

COLOR: black }

.TabControlSelected { BORDER-RIGHT: black 1px solid; BORDER-TOP: black 1px solid;

FONT-WEIGHT: bold; BACKGROUND: #4a3c8c; BORDER-LEFT: black 1px solid; CURSOR:

default; COLOR: white }

.TabControlLinkSelected { COLOR: white; TEXT-DECORATION: none }

.TabControlLink { COLOR: black; TEXT-DECORATION: none }

.TabControlLeft { WIDTH: 1px }

.TabControlRight { WIDTH: 0px }

.TabControlSelectedLeft { WIDTH: 1px }

.TabControlSelectedRight { WIDTH: 0px }

</style>

This sets the CSS styles that will modify the appearance of the tab menu. The CMSTabControl control
renders tabs even without any CSS classes specified, but they are extremely basic. You can find out
what individual CSS classes affect in the Appearance and styling topic.

The classes are defined in the <head> element only for this quick example, if you wish to use the
control on a Kentico CMS website, it is recommended to define these classes in the used stylesheet in
the administration interface at Site Manager -> Development -> CSS stylesheets.

4. Add the following code just after the <cms:CMSTabControl> element. It will display a stripe under the
tabs.

<hr style="width:100%; height:2px; margin-top:0px;" />

5. Save the changes to the web form. Now right-click it in the Solution explorer and select View in
Browser. The resulting page should display a tab menu like this:

Kentico CMS Controls 101

© 2014 Kentico Software

1.8.5.9.3 Configuration

As it is inherited from the BasicTabControl control, the CMSTabControl control has all of its properties.
These can be found in the BasicTabControl -> Configuration topic.

In addition, it has the following properties that can be set or used in the API:

Those of the common properties that have meaning for a single level tab menu:

CMS controls - common properties
CMS navigation - common properties

As well as:

Property Name Description Sample Value

EncodeMenuCaption Indicates whether HTML encoding should be
applied to the captions of menu items.
Useful only in special cases where the
names of the displayed documents contain
HTML code.

HighlightedNodePath

Path of the item that should be highlighted
as if selected. If you omit this value, the
control automatically uses the current alias
path from the aliaspath querystring
parameter.

"/products/notebooks"

LoadDataAutomaticaly Indicates whether data for the control should
be loaded automatically. This is performed
by default.

If you set this property to false, you can
enter a custom DataSet into the
DataSource property and then call the
ReloadData(false) method.

RenderImageAlt Indicates whether the ALT attribute should
be rendered for images used in the menu (for
XHTML compatibility).

Mentioned method:

Method Name Description

ReloadData(bool forceLoad)
Reloads the data.

If the forceLoad parameter is set to false and a value is assigned to

Kentico CMS 7.0 Controls102

© 2014 Kentico Software

the DataSource property, the properties of the CMSTabControl control
are not used and only the data from the DataSource is loaded.

1.8.5.9.4 Appearance and styling

The appearance of the CMSTabControl control is determined by the CSS classes it uses and by some
of its properties.

It uses the same CSS classes as the BasicTabControl, which it inherits. These can be found at
BasicTabControl -> Appearance and styling.

The recommended place to define these classes is in a stylesheet in the Kentico CMS administration
interface at Site Manager -> Development -> CSS stylesheets. These stylesheets can be applied to
individual documents (pages) that contain the control in CMS Desk -> Content -> Edit -> Properties ->
General -> CSS stylesheet.

1.8.5.10 CMSTreeMenu

1.8.5.10.1 Overview

The CMSTreeMenu control allows you to display a multi-level tree menu based on data from Kentico
CMS.

It allows you to display part of the CMS menu structure specified using its Path, MaxRelativeLevel,
ClassNames, CultureCode and WhereCondition properties.

The portal engine equivalent of the CMSTreeMenu control is the Navigation -> Tree menu web part.

The following topics are available to help you familiarize yourself with the CMSTreeMenu control:

Getting started - contains a quick step-by-step tutorial that allows you to learn the basics of using
the control
Configuration - describes and explains the properties that can be set for the control
Appearance and styling - describes and shows an example of how CSS styles can be used with the
control

1.8.5.10.2 Getting started

The following is a step-by-step tutorial that will show you how to display a tree menu based on CMS
content using the CMSTreeMenu control:

1. Create a new Web form and use it as a page template according to the guide in the Using ASPX
page templates topic.

2. Switch to its Design tab, drag and drop a CMSTreeMenu control from the toolbox onto the form.

3. Switch to the Source tab. The code of the CMSTreeMenu control should look like this:

<cms:CMSTreeMenu ID="CMSTreeMenu1" runat="server" />

http://devnet.kentico.com/docs/7_0/webparts/cmstreemenu_overview.htm

Kentico CMS Controls 103

© 2014 Kentico Software

4. Save the changes to the web form. Now if you look at the page using the created template on the
sample Corporate Site, an unstyled tree menu will be displayed.

Continue this tutorial in the Appearance and styling topic to see how CSS styles can be applied to the
CMSTreeMenu control.

1.8.5.10.3 Configuration

The following properties of the CMSTreeMenu control can be set or used in the API:

All of the common properties from:

CMS controls - common properties
CMS navigation - common properties

In addition, the following properties are available:

Property Name Description Sample Value

CellPadding
Cell padding of the table representing the
menu.

CellSpacing Cell spacing of the table representing the
menu.

CollapseSelectedNode
OnClick

Indicates whether the selected section of the
menu should be collapsed when clicked.

DisplayHighlightedItem
AsLink

Indicates whether highlighted items should
be displayed as a link.

EncodeMenuCaption Indicates whether HTML encoding should be
applied to the captions of menu items.
Useful only in special cases where the
names of the displayed documents contain
HTML code.

GenerateAllSubItems Indicates whether all sub-items should be
generated

GenerateIndentationInsi
deLink

Indicates whether indentation spaces should
be generated inside hyperlinks (true) or
outside (false). This applies only when you
do not use images in the menu.

GenerateOnlyOuterLink Indicates whether only one outer link should
be generated per each menu item.

HighlightedNodePath Path of the item that should be highlighted
as if it were selected. If you omit this value,
the control automatically uses the current
alias path from the aliaspath querystring
parameter.

"/products"

Indentation Indentation of menu item levels. Number of

Kentico CMS 7.0 Controls104

© 2014 Kentico Software

spaces that will be placed before each level
of menu items.

ItemIDPrefix Prefix placed before each item ID. You can
use it to keep IDs unique if you have several
CMSTreeMenu controls on the same page.

"submenu"

LoadDataAutomaticaly Indicates whether data for the control should
be loaded automatically. By default, the data
is loaded automatically.

If you set this property to false, you can
enter a custom DataSet into the
DataSource property and then call the
ReloadData(false) method.

MenuItemImageUrl URL address of the image that is displayed
next to menu items. It may start with "~/"
representing the virtual path of the current
application.

MenuItemOpenImageUrl URL address of the image that is displayed
next to open menu items. It may start with
"~/" representing the virtual path of the
current application.

OnMouseOutScript OnMouseOut script for menu items. You can
use macro expressions here.

OnMouseOverScript OnMouseOver script for menu items. You
can use macro expressions here.

OrderBy Gets or sets the ORDER BY clause of the
SQL statement.

Please be aware that it is necessary for the
root of the displayed tree (or sub-tree) to be
first in the resulting order, otherwise all
documents may not be displayed correctly.
This can be ensured by having the value of
this property start with the NodeLevel
column, such as in the sample value.

"NodeLevel, NodeOrder"

RenderedHTML Allows you to get or set the HTML code
rendered by the control.

You need to set this property before the
Render event - e.g. in the OnLoad event.

RenderImageAlt Indicates whether the ALT attribute should
be rendered for images used in the menu (for
XHTML compatibility).

RenderLinkTitle Specifies if the document name should be
rendered as a TITLE tag of links (for better
accessibility).

Kentico CMS Controls 105

© 2014 Kentico Software

RenderSubItems Indicates whether sub-items should be
rendered under the selected item.

UrlTarget Specifies the target frame for all URLs. "_blank"

Mentioned method:

Method Name Description

ReloadData(bool forceLoad)

Reloads the data.

If the forceLoad parameter is set to false and a value is assigned to
the DataSource property, the properties of the CMSTreeMenu control
are not used and only the data from the DataSource is loaded.

1.8.5.10.4 Appearance and styling

The appearance of the CMSTreeMenu control is determined by the CSS classes it uses and by some of
its properties.

You can use the following CSS classes to modify the design of the control:

Class Name Description

CMSTreeMenuTable The main table (TABLE element).

CMSTreeMenuItem Tree menu item (TD element).

CMSTreeMenuItemAlt Alternating style of the menu item (TD element). It's used only when
you set the UseAlternatingStyles property to true.

CMSTreeMenuSelectedItem Selected tree menu item (TD element).

CMSTreeMenuLink Link (A element).

CMSTreeMenuLinkAlt Alternating style of the link (A element). It's used only when you set
the UseAlternatingStyles property to true.

CMSTreeMenuSelectedLink Link of the selected item (A element).

CMSTreeMenuNestedTable Nested table (TABLE element). It's used only when
CollapseSelectedNodeOnClick is true.

The recommended place to define these classes is in a stylesheet in the Kentico CMS administration
interface at Site Manager -> Development -> CSS stylesheets. These stylesheets can be applied to
individual documents (pages) that contain the control in CMS Desk -> Content -> Edit -> Properties ->
General -> CSS stylesheet.

Please refer to Using the CSSPrefix property to learn how to add prefixes to these classes to customize
items at any menu level.

Example

Kentico CMS 7.0 Controls106

© 2014 Kentico Software

The following is an example of how CSS styles can be applied to a CMSTreeMenu control. If you wish to
create this example for yourself, please follow the tutorial in the Getting started topic, then continue with
the following steps:

1. Set the following properties of the CMSTreeMenu control:

Indentation: 5

This specifies the indentation used for lower menu levels.

The code of the control should now look like the following:

<cms:CMSTreeMenu ID="CMSTreeMenu1" runat="server" Indentation="5" />

Save the changes to the web form.

2. Now log in to the sample Corporate Site, go to Site Manager -> Development -> CSS stylesheets,
edit () the Corporate Site stylesheet and add the following classes:

/* Tree Menu design */

.CMSTreeMenuTable

{

width: 100%;

}

.CMSTreeMenuTable a

{

white-space: nowrap;

}

.subCMSTreeMenuTable

{

margin-left: 10px;

}

.CMSTreeMenuTable a:hover

{

text-decoration: underline;

}

.CMSTreeMenuItem

{

 background: #e7e7ff;

 padding: 3px 0px;

}

.CMSTreeMenuSelectedItem

{

 background: #4a3c8c;

 padding: 3px 0px;

 color: white;

}

.CMSTreeMenuLink

Kentico CMS Controls 107

© 2014 Kentico Software

{

padding-left: 12px;

text-decoration: none;

color: #000000;

}

This will modify the appearance of the tree menu. The created page should use this stylesheet by
default.

3. Now if you look at the page using the created template on the website, the tree menu will have its
appearance modified:

1.8.5.11 CMSTreeView

1.8.5.11.1 Overview

The CMSTreeView control allows you to display a multi-level tree menu based on data from Kentico
CMS.

It allows you to display part of the CMS menu structure specified using its Path, MaxRelativeLevel,
ClassNames, CultureCode and WhereCondition properties.

This control is derived from the intrinsic ASP.NET TreeView control and enhances it to automatically
read CMS documents and adds a set of additional properties. Please see the ASP.NET documentation
for more details on the properties, behavior and design of the TreeView control.

The portal engine equivalent of the CMSTreeView control is the Navigation -> Tree view web part.

The following topics are available to help you familiarize yourself with the CMSTreeView control:

Getting started - contains a quick step-by-step tutorial that allows you to learn the basics of using
the control
Configuration - describes and explains the properties that can be set for the control
Appearance and styling - describes and shows an example of how CSS styles can be used with the
control

http://devnet.kentico.com/docs/7_0/webparts/cmstreeview_overview.htm

Kentico CMS 7.0 Controls108

© 2014 Kentico Software

1.8.5.11.2 Getting started

The following is a step-by-step tutorial that will show you how to display a tree menu based on CMS
content using the CMSTreeView control:

1. Create a new Web form somewhere in your website installation directory.

2. Switch to its Design tab, drag and drop a CMSTreeView control from the toolbox onto the form.

3. Switch to the Source tab. The code of the CMSTreeView control should look like this:

<cms:CMSTreeView ID="CMSTreeView1" runat="server">

</cms:CMSTreeView>

4. Save the changes to the web form. Now right-click it in the Solution explorer and select View in
Browser. The resulting page should display a menu like this:

1.8.5.11.3 Configuration

The following properties of the CMSTreeView control can be set or used in the API:

Most of the common properties from:

CMS controls - common properties
CMS navigation - common properties

In addition, the following properties are available:

Property Name Description Sample Value

DisplayDocumentTypeI
mages

If true, the images used for items in the tree
will be loaded according to the document
type of the given item.

DynamicBehaviour If true, populate on demand will be enabled.
In this case, sub-items will be loaded

Kentico CMS Controls 109

© 2014 Kentico Software

dynamically when their parent node is
expanded.

This is recommended if there is a large
amount of nodes in the tree, or if the content
depends on other dynamic parameters.

EncodeMenuCaption Indicates whether HTML encoding should be
applied to the captions of menu items.
Useful only in special cases where the
names of the displayed documents contain
HTML code.

ExpandAllOnStartup Indicates whether all nodes in the tree
should be expanded by default.

ExpandCurrentPath Indicates whether all nodes along the path to
the currently selected item should be
expanded by default.

ExpandSubTree Indicates whether the sub-tree under the
currently selected item should be expanded
by default.

FixBrokenLines Indicates whether broken lines should be
fixed.

HideRootNode Indicates whether the root node should be
hidden.

HigLightSelectedItem Indicates whether the currently selected item
should be highlighted.

IgnoreDocumentMenuA
ction

Indicates whether the Menu actions
document menu settings should be ignored.
These can be set in CMS Desk -> Content -
> ... select document ... -> Properties ->
Navigation -> Menu actions.

This is necessary if you wish to use an
onClick Javascript action defined by the
OnClickAction property.

InactivateAllItemsInPath If enabled, all nodes on the path of the
currently selected document will be inactive
(will not perform any action when clicked).

InactivateSelectedItem If enabled, the node of the currently selected
document will be inactive.

InactiveNodeImage Indicates if the images displayed next to
nodes should also perform the specified
action for the given item when clicked.

InactiveRoot Indicates whether the root node should be
inactive.

Kentico CMS 7.0 Controls110

© 2014 Kentico Software

NodeImageUrl Gets or sets the path to the image that is
displayed next to regular nodes in the tree.

~/App_Themes/Site/Images/
treeitem.gif

OnClickAction Gets or sets the JavaScript command that
will be executed when a user clicks on an
item in the tree. If empty, the items in the
tree will serve as links to the corresponding
documents.

OrderBy Gets or sets the ORDER BY clause of the
SQL statement.

Please be aware that it is necessary for the
root of the displayed tree (or sub-tree) to be
first in the resulting order, otherwise all
documents may not be displayed correctly.
This can be ensured by having the value of
this property start with the NodeLevel
column, such as in the sample value.

"NodeLevel, NodeOrder"

RootImageUrl Gets or sets the path to the image that is
displayed next to the root node of the tree.

~/App_Themes/Site/Images/
root.gif

RootText Gets or sets the text caption of the root
node in the tree. This text is displayed
instead of the document name of the item in
the root of the tree.

As this control is inherited from the ASP.NET TreeView control, it also has all of its standard properties.

1.8.5.11.4 Appearance and styling

You can adjust the appearance of the CMSTreeView control by setting the inherited standard properties
of the ASP.NET TreeView control. You can find more details on particular properties in the .NET
Framework documentation.

The design of the CMSTreeView control can additionally be modified by its following properties and the
CSS classes that they specify:

Property Name Description Sample Value

InactiveItemClass CSS class of inactive items.

InactiveItemStyle Style of inactive items.

SelectedItemClass CSS class of selected items.

SelectedItemStyle Style of selected items.

The recommended place to define these classes is in a stylesheet in the Kentico CMS administration
interface at Site Manager -> Development -> CSS stylesheets. These stylesheets can be applied to
individual documents (pages) that contain the control in CMS Desk -> Content -> Edit -> Properties ->
General -> CSS stylesheet.

Kentico CMS Controls 111

© 2014 Kentico Software

1.8.6 Listings and viewers

1.8.6.1 Overview

The controls in this section provide various ways to display documents and their data from the Kentico
CMS database.

Available categories:

Standard listings and viewers
Listings and viewers with a custom query

1.8.6.2 Standard listings and viewers

1.8.6.2.1 Overview

The controls in this section provide various ways to display document data from the Kentico CMS
database. Options include several types of lists, tables, calendars and more.

Most of these controls inherit a corresponding control from the Basic Listings and viewers section and
extend it by integrating a data source for Kentico CMS documents.

These controls also support the use of Transformations.

If you wish to display more complex data structures containing multiple hierarchical levels and different
document types, you can do so by nesting the controls within each other. For more information about
this and an example, please refer to the Using nested controls topic. Alternatively, look into using the
CMSUniView control in combination with hierarchical transformations.

Documents in Kentico CMS can be connected to other documents through relationships. Learn more
about how the controls in this section can work with relationships in the Displaying related documents
topic.

Available controls:

CMSCalendar
CMSDataGrid
CMSDataList
CMSDocumentValue
CMSRepeater
CMSUniView
CMSViewer

1.8.6.2.2 Using nested controls

A nested control is one that is defined within a transformation or template used by another control.
When utilized with listing controls, this can be employed to display hierarchical data. The following
controls may contain other nested controls:

CMSDataList
CMSRepeater

http://devnet.kentico.com/docs/7_0/devguide/hierarchical_transformations.htm

Kentico CMS 7.0 Controls112

© 2014 Kentico Software

Please note

The CMSUniView control provides a way to display hierarchical data without the need for
nested controls and using it instead is recommended, as it offers superior performance.

These controls have the NestedControlsID property, which ensures that the correct content Path is
dynamically provided to nested controls.

The controls can be combined as required. Other controls, such as the CMSDataGrid for example, may
be nested into one of the controls above, but cannot contain nested controls themselves.

If you need to dynamically set the properties of a nested control, it is necessary to set its
DelayedLoading property to True.

The same approach can also be used for listing web parts when using the portal engine.

Example: Displaying a nested (hierarchical) repeater/datalist

This tutorial shows how you can use a hierarchical CMSRepeater/CMSDatalist combination to display a
list of product categories and a preview of products in each category from the products section of the
sample Corporate Site:

1. Create a new Web form somewhere in your website installation directory.

2. Switch to its Design tab, drag and drop a CMSRepeater control from the toolbox onto the form and
set its following properties:

Path: /products/%
ClassNames: cms.menuitem
NestedControlsID: CMSDataListNested
OrderBy: NodeOrder

This specifies the Path to the products section, tells the control to read pages (menu item documents)
and specifies the ID of the nested control that will be used in the next step. It also orders the retrieved
pages according to the order that they have in the CMS Desk content tree.

3. Switch to the Source tab and add the code marked by the CMSRepeater template comments
between the <cms:CMSRepeater> tags. The overall code of the CMSRepeater control should look like
this:

<ajaxToolkit:ToolkitScriptManager ID="manScript" runat="server"

EnableViewState="false" />

<cms:CMSRepeater ID="CMSRepeater1" runat="server" Path="/products/%"

ClassNames="CMS.MenuItem"

NestedControlsID="CMSDataListNested" OrderBy="NodeOrder" >

<%-- CMSRepeater template

--- --%>

Kentico CMS Controls 113

© 2014 Kentico Software

<ItemTemplate>

<h1><%# Eval("DocumentName") %></h1>

<p>

<%-- Nested DataList

-- --%>

<div class="ProductList" >

<cms:CMSDataList ID="CMSDataListNested" runat="server"

ClassNames="cms.smartphone;cms.laptop;cms.software;cms.ebook;

cms.itservice;cms.paidmembership"

TransformationName="CorporateSite.Transformations.ProductList"

RepeatColumns="6" >

</cms:CMSDataList>

</div>

<%-- Nested DataList

-- --%>

</p>

</ItemTemplate>

<%-- CMSRepeater template

--- --%>

</cms:CMSRepeater>

This defines the template used by the CMSRepeater to display items. As you can see, it contains a
nested CMSDataList control that is configured to display all product types in two columns using the
specified transformation and its ID is the same as the value that was entered into the NestedControlsID
property of the main CMSRepeater. Please note that its Path property is not specified, as it is
dynamically supplied by the main CMSRepeater control.

The same result could also be achieved by placing the CMSDataList into the code of a transformation,
and assigning that transformation to the CMSRepeater through its TransformationName property.

The ToolkitScriptManager control included at the top is required by the transformation used to display
the product documents. It is only there to ensure that this example is functional by itself and will usually
be included on your website's master page.

4. Save the changes to the web form. Now right-click it in the Solution explorer and select View in
Browser. The resulting page should display a hierarchical list as shown below (the image is from a page
that uses the Corporate Site stylesheet, which styles the displayed products appropriately).

Kentico CMS 7.0 Controls114

© 2014 Kentico Software

1.8.6.2.3 Displaying related documents

If a Kentico CMS document is related to some other documents, these can be displayed using one of
the following controls:

CMSCalendar
CMSDataGrid
CMSDataList
CMSRepeater
CMSUniView
CMSViewer

All of them have the following three properties that can be set in order to display related documents
(besides other properties, such as Path, ClassNames, etc.):

Property Name Description Sample Value

Kentico CMS Controls 115

© 2014 Kentico Software

RelatedNodeIsOnTheLef
tSide

Indicates whether the related document is on
the left or right side of the relationship.

RelationshipName Code name of the relationship. "isrelatedto"

RelationshipWithNodeG
UID

If set, only documents related to the
document with the entered NodeGUID value
will be selected.

Entering the "11111111-1111-1111-1111-
111111111111" value will select documents
related to the current document.

"36f8c4bc-f702-4736-8a25-
a82295668794"

More information about related documents can be found at Developer's Guide -> Content management ->
Document properties -> Related docs.

Example

The following example shows how to create an ASPX page template that displays news items related to
the current page by using the CMSRepeater control:

1. Now open the Kentico CMS web project in Visual Studio and create a new Web form called
RelationshipExample.aspx in the CMSTemplates/CorporateSite folder and check the Select master
page box. When the Select a Master Page dialog appears, choose the root.master default master
page from the CMSTemplates/CorporateSite folder.

2. Switch to the Source view of the newly created web form and add the following line under the <%@
Page %> directive:

<%@ Register Assembly="CMS.Controls" Namespace="CMS.Controls" TagPrefix="cms" %>

3. Switch to the code behind. You need to add a reference to the CMS.UIControls namespace:

[C#]

using CMS.UIControls;

4. Modify the class from which the page is inherited. Change the following code:

[C#]

public partial class CMSTemplates_CorporateSiteAspx_RelationshipExample :

System.Web.UI.Page

to this:

[C#]

http://devnet.kentico.com/docs/7_0/devguide/document_properties_related_docs.htm
http://devnet.kentico.com/docs/7_0/devguide/document_properties_related_docs.htm

Kentico CMS 7.0 Controls116

© 2014 Kentico Software

public partial class CMSTemplates_CorporateSiteAspx_RelationshipExample :
TemplatePage

Now the page can be correctly used as a page template in Kentico CMS.

Please keep in mind that the name of the class must be identical to the value of the Inherits attribute of
the <%@ Page %> directive on the ASPX page. This is case sensitive.

5. Switch to its Design tab, drag and drop a CMSRepeater control from the toolbox onto the form and
set its following properties:

ClassNames: CMS.News
Path: /News/%
TransformationName: cms.news.preview
RelationshipName: isrelatedto
RelationShipWithNodeGUID: 11111111-1111-1111-1111-111111111111

This tells the control to read news documents, specifies the path to the News section of the sample
Corporate Site, assigns the transformation that should be used to display the news documents and tells
the control to display only documents that are in the isrelatedto relationship with the currently selected
document.

The overall code of the CMSRepeater control will look like this:

<cms:CMSRepeater ID="CMSRepeater1" runat="server" ClassNames="CMS.News" Path="/

News/%"

TransformationName="cms.news.preview" RelationshipName="isrelatedto"

RelationshipWithNodeGUID="11111111-1111-1111-1111-111111111111" >

</cms:CMSRepeater>

6. Save the changes to the web form.

7. Now open the sample Corporate Site, go to Site Manager -> Development -> Page templates,
select the Corporate Site/Examples category and create a new template. Enter the following
properties:

Template display name: Related news
Template code name: RelatedNews

Click OK. Press the Select button next to the File name field and choose the
RelationshipExample.aspx web form from the CMSTemplates/CorporateSite folder.

Click Save.

8. Switch to the Sites tab, press Add sites and select Corporate Site.

9. Switch to CMS Desk, select Services from the content tree and create a new Page (menu item)
called under it, enter New Service 1 into the Page name field and select the Corporate Site ->
Examples -> Related news page template. Click Save. Now switch to Properties -> Related
docs tab of the new page and add a related document by using Add related document, choose is

Kentico CMS Controls 117

© 2014 Kentico Software

related to as the Relationship name and select the News -> New Consulting Services document as
the Right-side document.

10. Repeat step 9, but call the new page New Service 2 and select the News -> Apple iPad2 In Stock
document as the Right-side document of the relationship.

11. Now select the /Services/New Service 1 page from the content tree and switch to Live site mode.
You will see that the CMSRepeater on the page template is displaying a preview of the news item
related to this page:

If you select /Services/New Service 2 page, you will see the Apple iPad2 In Stock news item
displayed in the same fashion.

Using web parts to display related documents

When using the portal engine, related documents can also be displayed by the following web parts from
the Listings and viewers category:

Kentico CMS 7.0 Controls118

© 2014 Kentico Software

Calendar
DataList
Grid
Related documents
Repeater
Universal document viewer
Universal viewer
XSLT viewer

This can be done by setting the properties in their Relationships property section as seen in the
following image:

Example

The following example shows how to display news items related to a product by using the Repeater web
part:

1. Open the sample Corporate Site, go to CMS Desk -> Content, select Products -> Laptops and
Tablets -> Apple iPad 2 and switch to Properties -> Related docs. Now add a related document by
using Add related document, choose is related to as the Relationship name and select the News
-> Apple iPad2 In Stock document as the Right-side document.

2. Switch to the Design tab and add () a Listings and viewers -> Documents -> Repeater web part
to the Main zone web part zone.

3. The Web part properties (Repeater) dialog will appear. Set the following properties:

Content -> Path: /% (we want to display related news items from the whole website)
Content filter -> Document types: CMS.News
Transformations -> Transformation: CMS.News.Preview

Kentico CMS Controls 119

© 2014 Kentico Software

Relationships -> Main document: Select Display documents related to the current document
Relationships -> Main document is on the left side: check the checkbox
Relationships -> Relationship name: is related to
HTML Envelope -> Content before: <h3>Related news:</h3>

Click OK to add the Repeater web part to the page and then drag it above the Image gallery web part.

4. Now switch to Live site mode. You will see the news item that was added as a related document in
step 1 displayed below the product using the CMS.News.Preview transformation:

1.8.6.2.4 CMSCalendar

1.8.6.2.4.1 Overview

The CMSCalendar control allows you to display a calendar with events, news and other date-based
documents from the Kentico CMS database without the need to write any additional code.

The content is specified using its Path, MaxRelativeLevel, ClassNames, CultureCode,
WhereCondition and OrderBy properties. Data is retrieved using the SelectDocuments query of the
specified document type. These queries can be found at Kentico CMS Site Manager -> Development
-> Document types -> ... Edit specified document type ... -> Queries.

The CMSCalendar is derived from the BasicCalendar control.

The portal engine equivalent of the CMSCalendar control is the Listings and viewers -> Documents ->
Calendar web part.

The following topics are available to help you familiarize yourself with the CMSCalendar control:

http://devnet.kentico.com/docs/7_0/webparts/cmscalendar_overview.htm
http://devnet.kentico.com/docs/7_0/webparts/cmscalendar_overview.htm

Kentico CMS 7.0 Controls120

© 2014 Kentico Software

Getting started - contains a quick step-by-step tutorial that allows you to learn the basics of using
the control
Configuration - describes and explains the properties that can be set for the control
Appearance and styling - describes how the design of the control can be modified

1.8.6.2.4.2 Getting started

The following is a step-by-step tutorial that will show you how to display a calendar that contains links to
news items (CMS.News documents) on days when news items were released using the CMSCalendar
control:

1. Create a new Web form somewhere in your website installation directory.

2. Switch to its Design tab, drag and drop a CMSCalendar control from the toolbox onto the form and
set its following properties:

ClassNames: cms.news
DayField: NewsReleaseDate
TransformationName: cms.news.calendarevent
NoEventTransformationName: cms.news.calendarnoevent

This tells the control to read news documents, assigns the column it should get date/time values from
and specifies the transformations that should be used to display days with and without news releases.

3. Switch to the Source tab. The code of the CMSCalendar control should look like this:

<cms:CMSCalendar ID="CMSCalendar1" runat="server" ClassNames="cms.news"

DayField="NewsReleaseDate"

TransformationName="cms.news.calendarevent"

NoEventTransformationName="cms.news.calendarnoevent">

</cms:CMSCalendar>

There is no need to define templates for day items, since the transformation names have already been
specified.

4. Save the changes to the web form. Now right-click it in the Solution explorer and select View in
Browser. The resulting page should display a calendar like this:

Kentico CMS Controls 121

© 2014 Kentico Software

1.8.6.2.4.3 Configuration

As it is inherited from the BasicCalendar control, the CMSCalendar control has all of its properties
(including templates). These can be found in the BasicCalendar -> Configuration topic. In addition, it has
the following properties that can be set or used in the API:

In addition, it has most of the following properties that can be set or used in the API:

CMS controls - common properties
Displaying related documents

As well as:

Property Name Description Sample Value

DataSource
Gets or sets a DataSet containing calendar
events used to populate the items within the
control. This value is not required.

NoEventTransformation
Name

Name of the transformation applied to days
without any event in format <document type
code name>.<transformation name>.

"cms.news.CalendarNoEvent
"

TransformationName Name of the transformation applied to days
with an event in format <document type code
name>.<transformation name>.

"cms.news.CalendarEvent"

1.8.6.2.4.4 Appearance and styling

You can modify the appearance of the CMSCalendar control by setting the standard properties of the
ASP.NET Calendar control (inherited through the BasicCalendar). You can find more details on particular
properties in the .NET Framework documentation for the Calendar class.

A common way to set the appearance of this control is to assign a skin through the SkinID property.
Skins can be defined in .skin files under individual themes in the App_Themes folder. More information
can be found in the .NET Skins and Themes documentation.

The design of day cells can be determined by the transformations specified by its transformation name
properties or by the code of the template properties inherited from the BasicCalendar control.

1.8.6.2.5 CMSDataGrid

1.8.6.2.5.1 Overview

The CMSDataGrid control allows you to display document data from the Kentico CMS database in a
customizable table without the need to write any additional code.

The content is specified using its Path, MaxRelativeLevel, ClassNames, CultureCode,
WhereCondition and OrderBy properties. Data is retrieved using the SelectDocuments query of the
specified document type. These queries can be found at Kentico CMS Site Manager -> Development
-> Document types -> ... Edit specified document type ... -> Queries.

http://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.calendar.aspx
http://msdn.microsoft.com/en-us/library/ykzx33wh.aspx

Kentico CMS 7.0 Controls122

© 2014 Kentico Software

Please note

If you wish to display data using a custom query, please use the QueryDataGrid control.

The CMSDataGrid is derived from the BasicDataGrid control.

The standard DataGrid designer can be used to set up CMSDataGrid style and behaviour.

The portal engine equivalent of the CMSDataGrid control is the Listings and viewers -> Documents ->
Grid web part.

The following topics are available to help you familiarize yourself with the CMSDataGrid control:

Getting started - contains a step-by-step tutorial that allows you to learn the basics of using the
control
Configuration - describes and explains the properties that can be set for the control
Appearance and styling - describes how the design of the control can be modified

1.8.6.2.5.2 Getting started

The following is a step-by-step tutorial that will show you how to display a table that contains all
products (CMS.Smartphone, CMS.Laptop, CMS.Software, CMS.Ebook, CMS.ITService and
CMS.PaidMembership documents) from the products section of the sample Corporate Site using the
CMSDataGrid control:

1. Create a new Web form somewhere in your website installation directory.

2. Switch to its Design tab, drag and drop a CMSDataGrid control from the toolbox onto the form and
set its following properties:

ClassNames: cms.smartphone;cms.laptop;cms.software;cms.ebook;cms.itservice;
cms.paidmembership
Path: /products/%

This tells the control which document types to read and specifies the Path to the products section (the
default setting of /% would also display all products, but it is more effective to read only a section of the
site).

3. Right-click the CMSDataGrid on the form, select AutoFormat... and choose a scheme.

4. Then right-click the control again, select Show Smart Tag and then Property Builder...; the
CMSDataGrid1 Properties dialog will be displayed.

On the General tab, check the Allow sorting box.

Now switch to the Columns tab, where you can specify the columns that will be displayed, and uncheck
the Create columns automatically at run time box.

Add a new Bound Column from the Available columns list to the Selected columns list. Enter the
following values into the appropriate fields:

http://devnet.kentico.com/docs/7_0/webparts/cmsdatagrid_overview.htm
http://devnet.kentico.com/docs/7_0/webparts/cmsdatagrid_overview.htm

Kentico CMS Controls 123

© 2014 Kentico Software

Header text: Name
Data Field: SKUName
Sort expression: SKUName

Add another Bound column from the Available columns list to the Selected columns list. Enter the
following values in the appropriate fields:

Header text: Price
Data Field: SKUPrice
Sort expression: SKUPrice

Click OK.

4. Save the changes to the web form. Now right-click it in the Solution explorer and select View in
Browser. The resulting page should display a table like this (depending on the chosen scheme):

1.8.6.2.5.3 Configuration

As it is inherited from the BasicDataGrid control, the CMSDataGrid control has all of its properties.
These can be found in the BasicDataGrid -> Configuration topic.

In addition, it has all of the following properties that can be set or used in the API:

CMS controls - common properties
Displaying related documents

As well as:

Property Name Description Sample Value

Kentico CMS 7.0 Controls124

© 2014 Kentico Software

PageSize The number of displayed items per page.

SelectedItemTransform
ationName

Name of the transformation applied to the
selected item in format <document type
code name>.<transformation name>.

1.8.6.2.5.4 Appearance and styling

You can modify the appearance of the CMSDataGrid control by setting the standard properties of the
ASP.NET DataGrid control (inherited through the BasicDataGrid). You can find more details on particular
properties in the .NET Framework documentation for the DataGrid class.

A common way to set the appearance of this control is to assign a skin through the SkinID property.
Skins can be defined in .skin files under individual themes in the App_Themes folder. More information
can be found in the .NET Skins and Themes documentation.

1.8.6.2.6 CMSDataList

1.8.6.2.6.1 Overview

The CMSDataList control allows you to display document data from the Kentico CMS database in a list
based on transformations without the need to write any additional code.

The content is specified using its Path, MaxRelativeLevel, ClassNames, CultureCode,
WhereCondition and OrderBy properties. Data is retrieved using the SelectDocuments query of the
specified document type. These queries can be found at Kentico CMS Site Manager -> Development
-> Document types -> ... Edit specified document type ... -> Queries.

Please note

If you wish to display data using a custom query, please use the QueryDataList control.

The CMSDataList is derived from the BasicDataList control.

Unlike the CMSRepeater control, the CMSDataList allows you to display data in several columns.

It supports nested controls, read more in the Using nested controls topic.

The portal engine equivalent of the CMSDataList control is the Listings and viewers -> Documents ->
Datalist web part.

The following topics are available to help you familiarize yourself with the CMSDataList control:

Getting started - contains a step-by-step tutorial that allows you to learn the basics of using the
control
Configuration - describes and explains the properties that can be set for the control
Appearance and styling - describes how the design of the control can be modified

http://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.datagrid.aspx
http://msdn.microsoft.com/en-us/library/ykzx33wh.aspx
http://devnet.kentico.com/docs/7_0/webparts/cmsdatalist_overview.htm
http://devnet.kentico.com/docs/7_0/webparts/cmsdatalist_overview.htm

Kentico CMS Controls 125

© 2014 Kentico Software

1.8.6.2.6.2 Getting started

The following is a step-by-step tutorial that will show you how to display a list that contains all
smartphones, laptops and tablets (CMS.Smartphone and CMS.Laptop documents) from the products
section of the sample Corporate Site using the CMSDataList control:

1. Create a new Web form somewhere in your website installation directory.

2. Switch to its Design tab, drag and drop a CMSDataList control from the toolbox onto the form and
set its following properties:

ClassNames: cms.smartphone;cms.laptop
OrderBy: SKUName
Path: /products/%
RepeatColumns: 4
TransformationName: ecommerce.transformations.Product_SimplePreview
SelectedItemTransformationName: ecommerce.transformations.Product_Default

This tells the control which document types to read, sets the OrderBy value, specifies the Path to the
products section (the default setting of /% would also display all products, but it is more effective to read
only a section of the site), determines the amount of displayed columns and assigns the transformations
that should be used to display products.

3. Switch to the Source tab. The code of the CMSDataList control should look like this:

<cms:CMSDataList ID="CMSDataList1" runat="server" ClassNames="cms.smartphone;

cms.laptop"

OrderBy="SKUName" Path="/products/%" RepeatColumns="4"

TransformationName="ecommerce.transformations.Product_SimplePreview"

SelectedItemTransformationName="ecommerce.transformations.Product_Default">

</cms:CMSDataList>

It's not necessary to define the standard ItemTemplate elements of the DataList control since the
transformation names have already been specified.

4. Save the changes to the web form. Now right-click it in the Solution explorer and select View in
Browser. The resulting page should display a list like this:

Kentico CMS 7.0 Controls126

© 2014 Kentico Software

1.8.6.2.6.3 Configuration

As it is inherited from the BasicDataList control, the CMSDataList control has all of its properties. These
can be found in the BasicDataList -> Configuration topic.

In addition, it has all of the following properties that can be set or used in the API:

CMS controls - common properties
Displaying related documents

As well as:

Property Name Description Sample Value

AlternatingTransformati
onName

Name of the transformation applied to
alternating items in format <document type
code name>.<transformation name>.

DelayedLoading Indicates whether data should be loaded
during the load event instead of the default
init event.

EnablePaging Indicates whether the built-in DataPager
control should be used to page the list.

This property does not affect the UniPager
control, which must be added separately if
you wish to use it.

Kentico CMS Controls 127

© 2014 Kentico Software

NestedControlsID IDs of nested controls (CMSRepeater,
CMSDataList...), separated by semicolons.

"CMSRepeaterNested;
CMSDataListNested"

PageSize The number of displayed items per page.

PagerControl This property can be used to set or get the
pager control and its properties.

SelectedItemTransform
ationName

Name of the transformation applied to the
selected item in format <document type
code name>.<transformation name>.

ShowEditDeleteButtons Indicates if edit and delete buttons should
automatically be shown for each displayed
item in the edit mode of CMS Desk.

TransformationName Name of the transformation applied to
standard items in format <document type
code name>.<transformation name>.

1.8.6.2.6.4 Appearance and styling

You can modify the appearance of the CMSDataList control by setting the standard properties of the
ASP.NET DataList control (inherited through the BasicDataList). You can find more details on particular
properties in the .NET Framework documentation for the DataList class.

The design of list items can be determined by the transformations specified by the
AlternatingTransformationName, TransformationName and SelectedItemTransformationName
properties or by the code of the template properties inherited from the standard ASP.NET DataList
control.

1.8.6.2.7 CMSDocumentValue

1.8.6.2.7.1 Overview

This control allows you to display a specified value of the currently displayed Kentico CMS document. It
can be useful if you need to display e.g. the current document name on the page.

This control can easily be placed into ASPX page templates, page layouts or transformation code.

The following topics are available to help you familiarize yourself with the CMSDocumentValue control:

Getting started - contains a quick example of how this control can be used
Configuration - describes and explains the properties that can be set for the control

1.8.6.2.7.2 Getting started

The following tutorial will show you how to display the document name of the currently selected
document using the CMSDocumentValue control:

1. Create a new Web form and use it as a page template according to the guide in the Using ASPX
page templates topic.

http://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.datalist.aspx
http://devnet.kentico.com/docs/7_0/devguide/aspx_page_templates_how_it_works.htm
http://devnet.kentico.com/docs/7_0/devguide/page_layouts.htm

Kentico CMS 7.0 Controls128

© 2014 Kentico Software

2. Switch to its Design tab, drag and drop a CMSDocumentValue control from the toolbox onto the
form and set its following properties:

AttributeName: DocumentName
FormattingString: Document name: {0}

This tells the control which document value to display and sets the format that should be used.

The code of the control will look like this:

<cms:CMSDocumentValue ID="CMSDocumentValue1" runat="server"

AttributeName="DocumentName" FormattingString="Document name: {0}" />

3. Save the changes to the web form. Now if you look at the page using the created template on some
website, the name of the currently selected document will be displayed. This is only an example of how
this control can be used and by itself isn't very useful. In a practical scenario, the code of the control
from this example would be added to an existing ASPX page template, that has some other function, or
to the code of a page layout when using the portal engine.

1.8.6.2.7.3 Configuration

The following properties of the CMSDocumentValue control can be set or used in the API:

Property Name Description Sample Value

AttributeName Name of the field to be displayed. "DocumentName"

ClassNames
List of document types for which the value
should be displayed, separated by a
semicolon (;).

"cms.article;cms.menuitem"

FormattingString .NET formatting expression used for
displaying the value.

"Name: {0}"

StopProcessing Indicates if processing of the control should
be stopped and the control should not retrieve
or display any data.

1.8.6.2.8 CMSRepeater

1.8.6.2.8.1 Overview

The CMSRepeater control allows you to display document data from the Kentico CMS database in a list
based on transformations without the need to write any additional code.

The content is specified using its Path, MaxRelativeLevel, ClassNames, CultureCode,
WhereCondition and OrderBy properties. Data is retrieved using the SelectDocuments query of the
specified document type. These queries can be found at Kentico CMS Site Manager -> Development
-> Document types -> ... Edit specified document type ... -> Queries.

Please note

http://devnet.kentico.com/docs/7_0/devguide/page_layouts.htm

Kentico CMS Controls 129

© 2014 Kentico Software

If you wish to display data using a custom query, please use the QueryRepeater
control.

The CMSRepeater is derived from the BasicRepeater control.

It supports nested controls, read more in the Using nested controls topic.

The portal engine equivalent of the CMSRepeater control is the Listings and viewers -> Documents ->
Repeater web part.

The following topics are available to help you familiarize yourself with the CMSRepeater control:

Getting started - contains a quick step-by-step tutorial that allows you to learn the basics of using
the control
Configuration - describes and explains the properties that can be set for the control
Appearance and styling - describes how the design of the control can be modified

1.8.6.2.8.2 Getting started

The following is a step-by-step tutorial that will show you how to display a list of news items (CMS.News
documents) using the CMSRepeater control:

1. Create a new Web form somewhere in your website installation directory.

2. Switch to its Design tab, drag and drop a CMSRepeater control from the toolbox onto the form and
set its following properties:

ClassNames: cms.news
OrderBy: NewsReleaseDate DESC
TransformationName: cms.news.preview
SelectedItemTransformationName: cms.news.default

This tells the control which document types to read, sets the OrderBy value and assigns the
transformations that should be used to display the news items.

3. Switch to the Source tab. The code of the CMSRepeater control should look like this:

<cms:CMSRepeater ID="CMSRepeater1" runat="server" ClassNames="cms.news"

OrderBy="NewsReleaseDate DESC" TransformationName="cms.news.preview"

SelectedItemTransformationName="cms.news.default">

</cms:CMSRepeater>

It's not necessary to define the standard ItemTemplate elements of the Repeater control since the
transformation names have already been specified.

4. Save the changes to the web form. Now right-click it in the Solution explorer and select View in
Browser. The resulting page should display a list like this:

http://devnet.kentico.com/docs/7_0/webparts/repeater_overview.htm
http://devnet.kentico.com/docs/7_0/webparts/repeater_overview.htm

Kentico CMS 7.0 Controls130

© 2014 Kentico Software

1.8.6.2.8.3 Configuration

As it is inherited from the BasicRepeater control, the CMSRepeater control has all of its properties.
These can be found in the BasicRepeater -> Configuration topic.

In addition, it has all of the following properties that can be set or used in the API:

CMS controls - common properties
Displaying related documents

As well as:

Property Name Description Sample Value

AlternatingTransformati
onName

Name of the transformation applied to
alternating items in format <document type
code name>.<transformation name>.

DataSourceControl Object of the data source control.

DataSourceName ID of the data source control.

DelayedLoading Indicates whether data should be loaded
during the load event instead of the default
init event.

EnablePaging Indicates whether the built-in DataPager
control should be used to page the list.

This property does not affect the UniPager
control, which must be added separately if
you wish to use it.

ItemSeparator Separator between displayed items. "<hr/>"

NestedControlsID IDs of nested controls (CMSRepeater,
CMSDataList...), separated by semicolons.

"CMSRepeaterNested;
CMSDataListNested"

PageSize The number of displayed items per page.

Kentico CMS Controls 131

© 2014 Kentico Software

PagerControl This property can be used to set or get the
pager control and its properties.

SelectedItemTransform
ationName

Name of the transformation applied to the
selected item in format <document type
code name>.<transformation name>.

ShowEditDeleteButtons Indicates if edit and delete buttons should
automatically be shown for each displayed
item in the edit mode of CMS Desk.

TransformationName Name of the transformation applied to
standard items in format <document type
code name>.<transformation name>.

1.8.6.2.8.4 Appearance and styling

You can modify the appearance of the CMSRepeater control by setting the standard properties of the
ASP.NET Repeater control (inherited through the BasicRepeater). You can find more details on
particular properties in the .NET Framework documentation for the Repeater class.

The design of list items can be determined by the transformations specified by the
AlternatingTransformationName, TransformationName and SelectedItemTransformationName
properties or by the code of the template properties inherited from the standard ASP.NET Repeater
control.

1.8.6.2.9 CMSUniView

1.8.6.2.9.1 Overview

The CMSUniView control allows you to display document data from the Kentico CMS database in a
hierarchical structure based on transformations without the need to write any additional code. Using
hierarchical transformations, this control can be used to display documents with a varying design
depending on their type and hierarchical level.

The content is specified using its Path, MaxRelativeLevel, ClassNames, CultureCode,
WhereCondition and OrderBy properties. Data is retrieved using the SelectDocuments query of the
specified document type. These queries can be found at Kentico CMS Site Manager -> Development
-> Document types -> ... Edit specified document type ... -> Queries.

The CMSUniView is derived from the BasicUniView control.

It supports nested controls, read more in the Using nested controls topic.

The portal engine equivalent of the CMSUniView control is the Listings and viewers -> Documents ->
Universal viewer web part.

The following topics are available to help you familiarize yourself with the CMSUniView control:

Getting started - contains a step-by-step tutorial that allows you to learn the basics of using the
control
Configuration - describes and explains the properties that can be set for the control
Using hierarchical transformations - contains a quick step-by-step tutorial demonstrating how

http://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.repeater.aspx
http://devnet.kentico.com/docs/7_0/webparts/CMSUniView_overview.htm
http://devnet.kentico.com/docs/7_0/webparts/CMSUniView_overview.htm

Kentico CMS 7.0 Controls132

© 2014 Kentico Software

hierarchical transformations can be used by this control to display several different document types.
Appearance and styling - describes how the design of the control can be modified

1.8.6.2.9.2 Getting started

The following is a step-by-step tutorial that will show you how to display all documents from the sample
Corporate Site in a hierarchical structure using the CMSUniView control:

1. Create a new Web form somewhere in your website installation directory.

2. Switch to its Design tab, drag and drop a CMSUniView control from the toolbox onto the form and
set its LoadHierarchicalData property to true.

3. Switch to the Source tab and add the code marked by the CMSUniView templates comments
between the <cms:CMSUniView> tags. The overall code of the CMSUniView control should look like
this:

<cms:CMSUniView ID="CMSUniView1" runat="server" LoadHierarchicalData="True">

<%-- CMSUniView templates

--- --%>

<ItemTemplate>

 <%# HTMLHelper.HTMLEncode(Convert.ToString(Eval("NodeAliasPath"))) %>

</ItemTemplate>

<AlternatingItemTemplate>

 <%# HTMLHelper.HTMLEncode(Convert.ToString(Eval

("NodeAliasPath"))) %>

</AlternatingItemTemplate>

<SeparatorTemplate>

</SeparatorTemplate>

<HeaderTemplate>

</HeaderTemplate>

<FooterTemplate>

</FooterTemplate>

<FirstItemTemplate>

 <%# HTMLHelper.HTMLEncode(Convert.ToString(Eval

("NodeAliasPath"))) %>

</FirstItemTemplate>

<LastItemTemplate>

 <%# HTMLHelper.HTMLEncode(Convert.ToString(Eval

("NodeAliasPath"))) %>

</LastItemTemplate>

<%-- CMSUniView templates

--- --%>

Kentico CMS Controls 133

© 2014 Kentico Software

</cms:CMSUniView>

As you can see, this example uses ItemTemplates to determine the design of the displayed
documents. An alternative way of doing this is to set the TransformationName properties of the
CMSUniView, which causes the control to load the transformations from the database. A list of these
properties can be found in the Configuration topic.

4. Save the changes to the web form. Now right-click it in the Solution explorer and select View in
Browser. The resulting page should display a hierarchical list like this:

1.8.6.2.9.3 Configuration

As it is inherited from the BasicUniView control, which is in turn derived from the UniView control, the
CMSUniView control has all of their properties. These can be found in the BasicUniView -> Configuration
and UniView -> Configuration topics.

In addition, it has all of the following properties that can be set or used in the API:

CMS controls - common properties

Kentico CMS 7.0 Controls134

© 2014 Kentico Software

Displaying related documents

As well as:

Property Name Description Sample Value

DataSourceControl Object of the data source control.

DataSourceName ID of the data source control.

DelayedLoading Indicates whether data should be loaded
during the load event instead of the default
init event.

EnablePaging Indicates whether the built-in UniPager
control should be used to for paging. If you
wish to use paging, please be sure to set
LoadHierarchicalData to false, as
hierarchical data cannot be paged.

ItemSeparatorValue Separator that will be rendered between the
displayed items.

This property has greater priority than the
separator set in the transformation given in
the SeparatorTransformationName
property.

"<hr/>"

LoadHierarchicalData Indicates whether data should be bound in
the default format (flat structure) or changed
to a hierarchical grouped dataset.

NestedControlsID IDs of nested controls (CMSRepeater,
CMSDataList...), separated by semicolons.

"CMSRepeaterNested;
CMSDataListNested"

PageSize The number of displayed items per page.

PagerControl Gets the current UniPager control used for
paging.

PagerPosition The position of the pager relative to the
paged data.

"Bottom"
"Top"
"TopAndBottom"

ShowEditDeleteButtons Indicates if edit and delete buttons should
automatically be shown for each displayed
item in the edit mode of CMS Desk.

UseHierarchicalOrder Indicates whether the default hierarchical
order value should be used. The order is
used only if LoadHierarchicalData is set to
true. The default order value is "NodeLevel,
NodeOrder". The value of the OrderBy
property is added to the end of the OrderBy
expression.

Kentico CMS Controls 135

© 2014 Kentico Software

Specifying transformations

The following properties can be filled to define which transformations should be used by the control. All
transformations are specified in format:

<document type code name>.<transformation name>

The design of the listed items can alternatively be set by defining the ItemTemplate elements inherited
from the UniView control between the tags of the CMSUniView control.

Property Name Description Sample Value

AlternatingTransformati
onName

Name of the transformation applied to items
that have an even position in the listing
order. Every level in the hierarchy has its
own separate alternation pattern.

FirstTransformationNam
e

Name of the transformation applied to the
first item on every level in the hierarchy. Only
works for levels that contain more than one
item.

FooterTransformationNa
me

Name of the transformation rendered at the
end of every level (after the last item on the
level). Can be used to close encapsulating
elements from the Header.

HeaderTransformationN
ame

Name of the transformation rendered at the
beginning of every level (before the first item
on the level). Provides a convenient way to
visually separate or style individual levels.

HierarchicalTransformati
onName

Name of the used hierarchical
transformation.

Please see the Using hierarchical
transformations topic for an example of how
this property can be used.

LastTransformationNam
e

Name of the transformation applied to the
last item on every level in the hierarchy. Only
works for levels that contain more than one
item.

SelectedFooterItemTran
sformationName

Name of the transformation used for the
footer of selected items.

SelectedHeaderItemTra
nsformationName

Name of the transformation used for the
header of selected items.

SelectedItemTransform
ationName

Name of the transformation applied to the
currently selected item (i.e. the document
that is being viewed).

SeparatorTransformatio
nName

Name of the transformation rendered
between items.

http://devnet.kentico.com/docs/7_0/devguide/hierarchical_transformations.htm
http://devnet.kentico.com/docs/7_0/devguide/hierarchical_transformations.htm

Kentico CMS 7.0 Controls136

© 2014 Kentico Software

If hierarchical data is loaded, the separator is
placed only between items on the same level
(i.e. not between a parent item and its child).

SingleTransformationNa
me

Name of the transformation applied in cases
where there is only one item on a level in the
hierarchy.

TransformationName Name of the transformation applied to all
displayed items that are not covered by a
specialized transformation type (e.g.
alternating items, first items etc.).

Configuring the pager

The CMSUniView control has a built-in UniPager control which can be enabled by the EnablePaging
property. The following templates can be defined within the tags of the CMSUniView control to determine
the design of the pager. Please refer to the UniPager -> Structure topic to see what individual templates
represent.

Template Name Description Sample Value

PagerCurrentPageTemp
late

Code of the template used for the current
page in the pager. Use <%# Eval("Page") %
> to get the current page number, <%# Eval
("PageURL") %> to get page the URL or <%
Eval("PageLink") %> to get the page link.

<%# Eval("Page")
%>

PagerDirectPageTempl
ate

Code of the template used for direct page
changing. Use a TextBox or DropDownList
control with ID directPageControl to register
the page change event.

Page
<asp:TextBox
ID="DirectPageControl"
runat="server"
Style="width: 25px;" />
of
<%# Eval("Pages") %>

PagerFirstPageTemplat
e

Code of the template used for the link to the
first page in the pager. Use <%# Eval
("FirstURL") %> to get the link to the first
page.

<a href="<%# Eval
("FirstURL") %>">|<</
a>

PagerLastPageTemplat
e

Code of the template used for the link to the
last page in the pager. Use <%# Eval
("LastURL") %> to get the link to the last
page.

<a href="<%# Eval
("LastURL") %>">>|</
a>

PagerLayoutTemplate Code of the template used for the overall
pager layout.

PagerNextGroupTempla
te

Code of the template used for the link to the
next group of pages. Use <%# Eval
("NextGroupURL") %> to get the link to the
next group.

<a href="<%# Eval
("NextGroupURL") %
>">...

Kentico CMS Controls 137

© 2014 Kentico Software

PagerNextPageTemplat
e

Code of the template used for the link to the
next page. Use <%# Eval("NextURL") %> to
get the link to the next page.

<a href="<%# Eval
("NextURL") %>">>

PagerPageNumbersSep
aratorTemplate

Code of the template used for the separator
between page links in the pager.

PagerPageNumbersTe
mplate

Code of the template used for page links in
the pager. Use <%# Eval("Page") %> to get
the current page number, <%# Eval
("PageURL") %> to get the URL of the
current page or <%# Eval("PageLink") %> to
get the page link.

<a href="<%# Eval
("PageURL") %>"><%# Eval
("Page") %>

PagerPreviousGroupTe
mplate

Code of the template used for the link to the
previous group of pages. Use <%# Eval
("PreviousGroupURL") %> to get the link to
the next group.

<a href="<%# Eval
("PreviousGroupURL") %
>">...

PagerPreviousPageTem
plate

Code of the template used for the link to the
previous page. Use <%# Eval
("PreviousURL") %> to get the link to the
next page.

<a href="<%# Eval
("PreviousURL") %>"><

1.8.6.2.9.4 Using hierarchical transformations

The following is a step-by-step tutorial that will show you how the CMSUniView control can use a
hierarchical transformation to display a hierarchical list of job openings (CMS.Job documents), offices
(CMS.Office documents) and their categories (CMS.MenuItem documents) from the sample Corporate
Site:

1. Create a new Web form somewhere in your web site installation directory.

2. Switch to its Design tab, drag and drop a CMSUniView control from the toolbox onto the form and
set its following properties:

ClassNames: CMS.Office;CMS.Job;CMS.MenuItem
Path: /Company/%
LoadHierarchicalData: true
HierarchicalTransformationName: CMS.Job.HierarchicalJobsCareer

This tells the control which document types to read, specifies the Path that should be used, indicates
that data should be bound in a hierarchical grouped dataset and assigns the hierarchical transformation
that should be used to display the list. The hierarchical transformation contains individual
transformations for all three document types. This is how it is defined in the CMS:

Kentico CMS 7.0 Controls138

© 2014 Kentico Software

3. Switch to the Source tab. The code of the CMSUniView control should look like this:

<cms:CMSUniView ID="CMSUniView1" runat="server" ClassNames="CMS.Office;CMS.Job;

CMS.MenuItem"

Path="/Company/%" LoadHierarchicalData="true"

HierarchicalTransformationName="CMS.Job.HierarchicalJobsCareer" >

</cms:CMSUniView>

4. Save the changes to the web form. Now right-click it in the Solution explorer and select View in
Browser. The resulting page should look like this:

1.8.6.2.9.5 Appearance and styling

The appearance of the CMSUniView control is determined by the transformations specified by its
TransformationName properties or by the code of the ItemTemplates inherited from the UniView
control and by certain other properties. These are described in more detail in the Configuration topic.

Kentico CMS Controls 139

© 2014 Kentico Software

1.8.6.2.10 CMSView er

1.8.6.2.10.1 Overview

The CMSViewer control allows you to display document data from the Kentico CMS database based on
XSLT transformations without the need to write any additional code.

The content is specified using its Path, MaxRelativeLevel, ClassNames, CultureCode,
WhereCondition and OrderBy properties. Data is retrieved using the SelectDocuments query of the
specified document type. These queries can be found at Kentico CMS Site Manager -> Development
-> Document types -> ... Edit specified document type ... -> Queries.

The portal engine equivalent of the CMSViewer control is the Listings and viewers -> Documents -> XSLT
viewer web part.

The following topics are available to help you familiarize yourself with the CMSViewer control:

Getting started - contains a quick step-by-step tutorial that allows you to learn the basics of using
the control
Configuration - describes and explains the properties that can be set for the control
Appearance and styling - describes how the design of the control can be modified

1.8.6.2.10.2 Getting started

The following is a step-by-step tutorial that will show you how to use the CMSViewer control to display a
specific news item (CMS.News document) using an XSLT transformation:

1. Create a new Web form somewhere in your website installation directory.

2. Switch to its Design tab, drag and drop a CMSViewer control from the toolbox onto the form and set
its following properties:

ClassNames: CMS.News
Path: /News/New-Consulting-Services
TransformationName: cms.news.default_xslt

This tells the control which document types to read, specifies the Path to the news document and
assigns the transformation that should be used.

Please note

The document types entered into the ClassNames property must be identical (it is
case sensitivite), to the value of the match property of the <xsl:template> element of
the specified xslt transformation.

3. Switch to the Source tab. The code of the CMSViewer control should look like this:

http://devnet.kentico.com/docs/7_0/webparts/cmsxsltlist_overview.htm
http://devnet.kentico.com/docs/7_0/webparts/cmsxsltlist_overview.htm

Kentico CMS 7.0 Controls140

© 2014 Kentico Software

<cms:CMSViewer ID="CMSViewer1" runat="server" ClassNames="CMS.News"

Path="/News/New-Consulting-Services" TransformationName="cms.news.default_xslt" />

4. Save the changes to the web form. Now right-click it in the Solution explorer and select View in
Browser. The resulting page should look like this:

1.8.6.2.10.3 Configuration

The following properties of the CMSViewer control can be set or used in the API:

All of the common properties from:

CMS controls - common properties
Displaying related documents

In addition, the following properties are available:

Property Name Description Sample Value

HideControlForZeroRow
s

Hides the control when no data is loaded.
Default value is False.

SelectedItemTransform
ationName

Name of the XSLT transformation applied to
the selected item in format <document type
code name>.<transformation name>.

TransformationName Name of the used XSLT transformation in
format <document type code
name>.<transformation name>.

"cms.news.default_xslt"

ZeroRowsText Text to be shown when the control is hidden
by the HideControlForZeroRows property.

1.8.6.2.10.4 Appearance and styling

The appearance and design of the displayed content is completely driven by the XSLT transformation
specified in the TransformationName property.

Kentico CMS Controls 141

© 2014 Kentico Software

1.8.6.3 Listings and viewers with a custom query

1.8.6.3.1 Overview

The controls in this section provide various ways to display document data from the Kentico CMS
database.

Each of these controls inherits a corresponding control from the Basic Listings and viewers section and
extends it to easily work with Kentico CMS documents and read and use predefined queries from the
system.

The functionality of these controls is very similar to that of the controls in the Standard listings and
viewers section, the main difference between them is that these controls use full database queries
assigned through their QueryName property to determine the content they display. Only queries stored
in the CMS_Query table of the Kentico CMS database can be selected, so if you wish to use a custom
query, you must create it there or edit an existing one. The queries can be managed through the
administration interface at Site Manager -> Development -> Document types / System tables /
Custom tables -> ... Edit () object ... -> Queries.

These controls also support the use of Transformations.

Since the controls in this section use pre-defined queries to read data, certain steps must be taken to
keep the functionality of the usual properties that set query clauses, such as OrderBy etc. This must be
taken into consideration when writing custom queries. For more information, please refer to the Using
control properties to set query clauses topic.

Available controls:

QueryDataGrid
QueryDataList
QueryRepeater
QueryUniView

1.8.6.3.2 Using control properties to set query clauses

Listing web parts and controls provide properties that set sections of the query (clauses) that loads the
data. These properties allow users to adjust the data retrieval for individual instances of web parts or
controls. To maintain this functionality for your custom queries, add the following expressions into the
query code:

Property Expression

OrderBy ##ORDERBY##

SelectedColumns ##COLUMNS##

TopN ##TOPN##

WhereCondition ##WHERE##

For example, a query that selects page (menu item) documents looks like this:

SELECT ##TOPN## ##COLUMNS## FROM View_CONTENT_MenuItem_Joined WHERE (##WHERE##)

Kentico CMS 7.0 Controls142

© 2014 Kentico Software

ORDER BY ##ORDERBY##

Dynamic insertion of WhereCondition parameters

The controls in this section also support dynamically inserted parameters into the WhereCondition
property:

You can use context macro expressions that are resolved at run-time, such as the following:

Expression Description

{%currentaliaspath%} Alias path of the current page.

{%currentculturecode%} Culture code of the user's preferred content culture.

{%currentsiteid%} SiteID value of the current site.

1.8.6.3.3 CMS Custom query - common properties

All of the Listings and viewers controls with a custom query have the following properties in common:

Property Name Description Sample Value

PageSize The number of displayed items per page.

QueryName Name of the used query in format
<document type code
name>.<transformation name>.

"CMS.MenuItem.selectdocu
ments"

QueryParameters Gets or sets an array with query parameters.

1.8.6.3.4 QueryDataGrid

1.8.6.3.4.1 Overview

The QueryDataGrid control displays document data from the Kentico CMS database in a customizable
table without the need to write any extra code. Additionally, it allows you to specify the query used to
retrieve data through its QueryName property. Only queries stored in the CMS_Query table of the
Kentico CMS database can be selected, so if you wish to use a custom query, you must create it there
or edit an existing one. The queries can be managed through the administration interface at Site
Manager -> Development -> Document types / System tables / Custom tables -> ... Edit ()
object ... -> Queries.

The QueryDataGrid is derived from the BasicDataGrid control.

The standard DataGrid designer can be used to set up QueryDataGrid style and behaviour.

Please refer to the Using control properties to set query clauses topic to find information about using
properties such as WhereCondition with this control.

The portal engine equivalent of the QueryDataGrid control is the Listings and viewers -> Grid with

Kentico CMS Controls 143

© 2014 Kentico Software

custom query web part.

Please note

If you only wish to display data from a specific part of the content tree, please consider
using the CMSDataGrid control instead.

The following topics are available to help you familiarize yourself with the QueryDataGrid control:

Getting started - contains a step-by-step tutorial that allows you to learn the basics of using the
control
Configuration - describes and explains the properties that can be set for the control
Appearance and styling - describes how the design of the control can be modified

1.8.6.3.4.2 Getting started

The following is a step-by-step tutorial that will show you how to display a table that contains the latest
news items (CMS.News documents) from the sample Corporate Site using the QueryDataGrid control:

1. Create a new Web form somewhere in your website installation directory.

2. Switch to its Design tab, drag and drop a QueryDataGrid control from the toolbox onto the form and
set its QueryName property to cms.news.selectlatest. This assigns the query that should be used to
retrieve news documents and tells the control to ensure sorting.

3. Right-click the QueryDataGrid on the form, select AutoFormat... and choose a scheme.

4. Right-click the QueryDataGrid on the form, select Show Smart Tag and then Property Builder...;
the QueryDataGrid1 Properties dialog will be displayed.

On the General tab, check the Allow sorting box.

Now switch to the Columns tab, where you can specify the columns that will be displayed, and uncheck
the Create columns automatically at run time box.

Add a new Bound Column from the Available columns list to the Selected columns list. Enter the
following values into the appropriate fields:

Header text: News Title
Data Field: NewsTitle
Sort expression: NewsTitle

Add another Bound column from the Available columns list to the Selected columns list. Enter the
following values in the appropriate fields:

Header text: Release Date
Data Field: NewsReleaseDate
Sort expression: NewsReleaseDate

Click OK.

Kentico CMS 7.0 Controls144

© 2014 Kentico Software

5. Save the changes to the web form. Now right-click it in the Solution explorer and select View in
Browser. The resulting page should display a table similar to the following (depending on the chosen
scheme):

1.8.6.3.4.3 Configuration

As it is inherited from the BasicDataGrid control, the QueryDataGrid control has all of its properties.
These can be found in the BasicDataGrid -> Configuration topic.

In addition, it has all of the following properties that can be set or used in the API:

CMSBase - common properties
CMS Custom query - common properties

1.8.6.3.4.4 Appearance and styling

You can modify the appearance of the QueryDataGrid control by setting the standard properties of the
ASP.NET DataGrid control (inherited through the BasicDataGrid). You can find more details on particular
properties in the .NET Framework documentation for the DataGrid class.

A common way to set the appearance of this control is to assign a skin through the SkinID property.
Skins can be defined in .skin files under individual themes in the App_Themes folder. More information
can be found in the .NET Skins and Themes documentation.

1.8.6.3.5 QueryDataList

1.8.6.3.5.1 Overview

The QueryDataList control displays document data from the Kentico CMS database in a list based on
transformations without the need to write any extra code. Additionally, it allows you to specify the query
used to retrieve data through its QueryName property. Only queries stored in the CMS_Query table of
the Kentico CMS database can be selected, so if you wish to use a custom query, you must create it
there or edit an existing one. The queries can be managed through the administration interface at Site
Manager -> Development -> Document types / System tables / Custom tables -> ... Edit ()
object ... -> Queries.

The QueryDataList is derived from the BasicDataList control.

Unlike the QueryRepeater control, the QueryDataList allows you to display data in several columns.

Please refer to the Using control properties to set query clauses topic to find information about using
properties such as WhereCondition with this control.

The portal engine equivalent of the QueryDataList control is the Listings and viewers -> Datalist with

http://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.datagrid.aspx
http://msdn.microsoft.com/en-us/library/ykzx33wh.aspx

Kentico CMS Controls 145

© 2014 Kentico Software

custom query web part.

Please note

If you only wish to display data from a specific part of the content tree, please consider
using the CMSDataList control instead.

The following topics are available to help you familiarize yourself with the QueryDataList control:

Getting started - contains a quick step-by-step tutorial that allows you to learn the basics of using
the control
Configuration - describes and explains the properties that can be set for the control
Appearance and styling - describes how the design of the control can be modified

1.8.6.3.5.2 Getting started

The following is a step-by-step tutorial that will show you how to display a list of all smartphones
(CMS.Smartphone documents) from the sample Corporate Site using the QueryDataList control:

1. Create a new Web form somewhere in your website installation directory.

2. Switch to its Design tab, drag and drop a QueryDataList control from the toolbox onto the form and
set its following properties:

QueryName: cms.smartphone.selectdocuments
RepeatColumns: 3
TransformationName: ecommerce.transformations.Product_SimplePreview

This assigns the query that should be used to retrieve smartphone documents, determines the amount
of displayed columns and assigns the transformation that should be used.

3. Switch to the Source tab. The code of the QueryDataList control should look like this:

<cms:QueryDataList ID="QueryDataList1" runat="server"

QueryName="cms.smartphone.selectdocuments"

RepeatColumns="3"

TransformationName="ecommerce.transformations.Product_SimplePreview" >

</cms:QueryDataList>

It's not necessary to define the standard ItemTemplate elements of the DataList control since the
transformation names have already been specified.

4. Save the changes to the web form. Now right-click it in the Solution explorer and select View in
Browser. The resulting page should display a list like this:

Kentico CMS 7.0 Controls146

© 2014 Kentico Software

1.8.6.3.5.3 Configuration

As it is inherited from the BasicDataList control, the QueryDataList control has all of its properties.
These can be found in the BasicDataList -> Configuration topic.

In addition, it has all of the following properties that can be set or used in the API:

CMSBase - common properties
CMS Custom query - common properties

As well as:

Property Name Description Sample Value

AlternatingTransformati
onName

Name of the transformation applied to
alternating items in format <document type
code name>.<transformation name>.

EnablePaging Indicates whether the built-in DataPager
control should be used to page the list.

This property does not affect the UniPager
control, which must be added separately if
you wish to use it.

IsSelected Indicates whether the current data source
contains the selected item.

PagerControl This property can be used to set or get the
pager control and its properties.

SelectedDatabaseColu
mnName

Gets or sets the column name that should
be used to select items.

SelectedItemTransform
ationName

Name of the transformation applied to the
selected item in format <document type
code name>.<transformation name>.

Kentico CMS Controls 147

© 2014 Kentico Software

SelectedQueryStringKe
yName

Gets or sets the query string key name. The
presence of the key in a query string
indicates, that some item should be
selected. The item is determined by the
value of the query string key.

SelectedValidationType Gets or sets the validation type used for the
query string key that determines which item
is selected.

"int"
"guid"
"string"

ShowEditDeleteButtons Indicates if edit and delete buttons should
automatically be shown for each displayed
item in the edit mode of CMS Desk.

TransformationName Name of the transformation applied to
standard items in format <document type
code name>.<transformation name>.

1.8.6.3.5.4 Appearance and styling

You can modify the appearance of the QueryDataList control by setting the standard properties of the
ASP.NET DataList control (inherited through the BasicDataList). You can find more details on particular
properties in the .NET Framework documentation for the DataList class.

The design of list items can be determined by the transformations specified by the
AlternatingTransformationName, TransformationName and SelectedItemTransformationName
properties or by the code of the template properties inherited from the standard ASP.NET DataList
control.

1.8.6.3.6 QueryRepeater

1.8.6.3.6.1 Overview

The QueryRepeater control displays document data from the Kentico CMS database in a list based on
transformations without the need to write any extra code. Additionally, it allows you to specify the query
used to retrieve data through its QueryName property. Only queries stored in the CMS_Query table of
the Kentico CMS database can be selected, so if you wish to use a custom query, you must create it
there or edit an existing one. The queries can be managed through the administration interface at Site
Manager -> Development -> Document types / System tables / Custom tables -> ... Edit ()
object ... -> Queries.

The QueryRepeater is derived from the BasicRepeater control.

If you only wish to display data from a specific part of the content tree, please consider using the
CMSRepeater control instead.

Please refer to the Using control properties to set query clauses topic to find information about using
properties such as WhereCondition with this control.

The portal engine equivalent of the QueryRepeater control is the Listings and viewers -> Repeater
with custom query web part.

http://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.datalist.aspx

Kentico CMS 7.0 Controls148

© 2014 Kentico Software

Please note

If you only wish to display data from a specific part of the content tree, please consider
using the CMSRepeater control instead.

The following topics are available to help you familiarize yourself with the QueryRepeater control:

Getting started - contains a quick step-by-step tutorial that allows you to learn the basics of using
the control
Configuration - describes and explains the properties that can be set for the control
Appearance and styling - describes how the design of the control can be modified

1.8.6.3.6.2 Getting started

The following is a step-by-step tutorial that will show you how to display a list of all laptops (CMS.Laptop
documents) from the sample Corporate Site using the QueryRepeater control:

1. Create a new Web form somewhere in your website installation directory.

2. Switch to its Design tab, drag and drop a QueryRepeater control from the toolbox onto the form and
set its following properties:

QueryName: cms.laptop.selectdocuments
TransformationName: ecommerce.transformations.Product_SimplePreview

This assigns the query that should be used to retrieve laptop documents and the transformations that
should be used to display them.

3. Switch to the Source tab. The code of the QueryRepeater control should look like this:

<cms:QueryRepeater ID="QueryRepeater1" runat="server"

QueryName="cms.laptop.selectdocuments"

TransformationName="ecommerce.transformations.Product_SimplePreview" >

</cms:QueryRepeater>

It's not necessary to define the standard ItemTemplate elements of the Repeater control since the
transformation names have already been specified.

4. Save the changes to the web form. Now right-click it in the Solution explorer and select View in
Browser. The resulting page should display a list like this:

Kentico CMS Controls 149

© 2014 Kentico Software

1.8.6.3.6.3 Configuration

As it is inherited from the BasicRepeater control, the QueryRepeater control has all of its properties.
These can be found in the BasicRepeater -> Configuration topic.

In addition, it has all of the following properties that can be set or used in the API:

CMSBase - common properties
CMS Custom query - common properties

As well as:

Property Name Description Sample Value

AlternatingTransformati
onName

Name of the transformation applied to
alternating items in format <document type
code name>.<transformation name>.

EnablePaging Indicates whether the built-in DataPager
control should be used to page the list.

This property does not affect the UniPager
control, which must be added separately if
you wish to use it.

IsSelected Indicates whether the current data source
contains the selected item.

Kentico CMS 7.0 Controls150

© 2014 Kentico Software

ItemSeparator Separator between displayed items. "<hr/>"

PagerControl This property can be used to set or get the
pager control and its properties.

SelectedDatabaseColu
mnName

Gets or sets the column name that should
be used to select items.

SelectedItemTransform
ationName

Name of the transformation applied to the
selected item in format <document type
code name>.<transformation name>.

SelectedQueryStringKe
yName

Gets or sets the query string key name. The
presence of the key in a query string
indicates, that some item should be
selected. The item is determined by the
value of the query string key.

SelectedValidationType Gets or sets the validation type used for the
query string key that determines which item
is selected.

"int"
"guid"
"string"

ShowEditDeleteButtons Indicates if edit and delete buttons should
automatically be shown for each displayed
item in the edit mode of CMS Desk.

TransformationName Name of the transformation applied to
standard items in format <document type
code name>.<transformation name>.

1.8.6.3.6.4 Appearance and styling

You can modify the appearance of the QueryRepeater control by setting the standard properties of the
ASP.NET Repeater control (inherited through the BasicRepeater). You can find more details on
particular properties in the .NET Framework documentation for the Repeater class.

The design of list items can be determined by the transformations specified by the
AlternatingTransformationName, TransformationName and SelectedItemTransformationName
properties or by the code of the template properties inherited from the standard ASP.NET Repeater
control.

1.8.6.3.7 QueryUniView

1.8.6.3.7.1 Overview

The QueryUniView control displays document data from the Kentico CMS database in a hierarchical
structure based on transformations without the need to write any additional code. Using hierarchical
transformations, this control can be used to display documents with a varying design depending on their
type and hierarchical level. Please see the Using hierarchical transformations topic under the
CMSUniView control for an example of how this works.

Additionally, it allows you to specify the query used to retrieve data through its QueryName property.
Only queries stored in the CMS_Query table of the Kentico CMS database can be selected, so if you
wish to use a custom query, you must create it there or edit an existing one. The queries can be

http://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.repeater.aspx

Kentico CMS Controls 151

© 2014 Kentico Software

managed through the administration interface at Site Manager -> Development -> Document types /
System tables / Custom tables -> ... Edit () object ... -> Queries.

The QueryUniView is derived from the BasicUniView control.

Please refer to the Using control properties to set query clauses topic to find information about using
properties such as WhereCondition with this control.

The portal engine equivalent of the QueryUniView control is the Listings and viewers -> Universal
viewer with custom query web part.

Please note

If you only wish to display data from a specific part of the content tree, please consider
using the CMSUniView control instead.

The following topics are available to help you familiarize yourself with the QueryUniView control:

Getting started - contains a step-by-step tutorial that allows you to learn the basics of using the
control
Configuration - describes and explains the properties that can be set for the control
Appearance and styling - describes how the design of the control can be modified

1.8.6.3.7.2 Getting started

The following is a step-by-step tutorial that will show you how to display all pages (CMS.Menuitem
documents) from the sample Corporate Site in a hierarchical structure using the QueryUniView control:

1. Create a new Web form somewhere in your website installation directory.

2. Switch to its Design tab, drag and drop a QueryUniView control onto the form and set its following
properties:

LoadHierarchicalData: true
QueryName: CMS.MenuItem.selectdocuments
IDColumnName: NodeID
ParentIDColumnName: NodeParentID
LevelColumnName: NodeLevel
TransformationName: CMS.MenuItem.ListItem
HeaderTransformationName: CMS.MenuItem.ListItemHeader
FooterTransformationName: CMS.MenuItem.ListItemFooter

This tells the control to load data in a hierarchical grouped dataset, assigns the query that should be
used to retrieve the page documents, sets the column names that should be used to determine the
hierarchy structure of the pages and assigns the transformations that should be used to display them.

3. Switch to the Source tab. The code of the QueryUniView control should look like this:

<cms:QueryUniView ID="QueryUniView1" runat="server" LoadHierarchicalData="true"

Kentico CMS 7.0 Controls152

© 2014 Kentico Software

QueryName="CMS.MenuItem.selectdocuments" IDColumnName="NodeID"

ParentIDColumnName="NodeParentID"

LevelColumnName="NodeLevel" TransformationName="CMS.MenuItem.ListItem"

HeaderTransformationName="CMS.MenuItem.ListItemHeader"

FooterTransformationName="CMS.MenuItem.ListItemFooter" >

</cms:QueryUniView>

It's not necessary to define the standard ItemTemplate elements of the UniView control since the
transformation names have already been specified.

4. Save the changes to the web form. Now right-click it in the Solution explorer and select View in
Browser. The resulting page should display a hierarchical list like this:

1.8.6.3.7.3 Configuration

As it is inherited from the BasicUniView control, which is in turn derived from the UniView control, the
QueryUniView control has all of their properties. These can be found in the BasicUniView ->
Configuration and UniView -> Configuration topics.

Kentico CMS Controls 153

© 2014 Kentico Software

In addition, it has all of the following properties that can be set or used in the API:

CMSBase - common properties
CMS Custom query - common properties

As well as:

Property Name Description Sample Value

DelayedLoading Indicates whether data should be loaded
during the load event instead of the default
init event.

EnablePaging Indicates whether the built-in UniPager
control should be used to for paging. If you
wish to use paging, please be sure to set
LoadHierarchicalData to false, as
hierarchical data cannot be paged.

IDColumnName Gets or sets the name of the column that is
used as a unique identifier for the displayed
objects. It is used in a parent-child
relationship with the column specified in the
ParentIDColumnName property.

"NodeID"

IsSelected Indicates whether the current data source
contains the selected item.

ItemSeparatorValue Separator between displayed items. This
property has greater priority than the
separator set in the transformation given in
the SeparatorTransformationName
property.

"<hr/>"

LevelColumnName Gets or sets the name of the column that is
used to determine the hierarchical level of
items.

"NodeLevel"

LoadHierarchicalData Indicates whether data should be bound in
default format or changed to a hierarchical
grouped dataset.

PagerControl Gets the current UniPager control used for
paging.

PagerPosition The position of the pager relative to the
paged data.

"Bottom"
"Top"
"TopAndBottom"

ParentIDColumnName Gets or sets the name of the column that
contains the unique identifier of an object's
parent. It is used in a parent-child
relationship with the column specified in the
IDColumnName property.

"NodeParentID"

Kentico CMS 7.0 Controls154

© 2014 Kentico Software

SelectedDatabaseColu
mnName

Gets or sets the column name that should
be used to identify the currently selected
item.

"DocumentID"

SelectedQueryStringKe
yName

Gets or sets the query string key name. The
presence of this key in a query string
indicates that some item should be
selected. The item is determined by the
value of the query string key.

SelectedValidationType Gets or sets the validation type used for the
query string key that determines which item
is selected.

"int"
"guid"
"string"

ShowEditDeleteButtons Indicates if edit and delete buttons should
automatically be shown for each displayed
item in the edit mode of CMS Desk.

UseHierarchicalOrder Indicates whether the default hierarchical
order value should be used. The order is
used only if LoadHierarchicalData is set to
true. The default order value is "NodeLevel,
NodeOrder". The value of the OrderBy
property is added to the end of the OrderBy
expression.

Enabling this property is only recommended
when displaying documents.

Specifying transformations

The following properties can be filled to define which transformations should be used by the control. All
transformations are specified in format:

<document type code name>.<transformation name>

The design of the listed items can alternatively be set by defining the ItemTemplate elements inherited
from the UniView control between the tags of the QueryUniView control.

Property Name Description Sample Value

AlternatingTransformati
onName

Name of the transformation applied to items
that have an even position in the listing
order. Every level in the hierarchy has its
own separate alternation pattern.

FirstTransformationNam
e

Name of the transformation applied to the
first item on every level in the hierarchy. Only
works for levels that contain more than one
item.

FooterTransformationNa
me

Name of the transformation rendered at the
end of every level (after the last item on the
level). Can be used to close encapsulating

Kentico CMS Controls 155

© 2014 Kentico Software

elements from the Header.

HeaderTransformationN
ame

Name of the transformation rendered at the
beginning of every level (before the first item
on the level). Provides a convenient way to
visually separate or style individual levels.

HierarchicalTransformati
onName

Name of the used hierarchical
transformation.

Please see the Using hierarchical
transformations topic for an example of how
this property can be used.

LastTransformationNam
e

Name of the transformation applied to the
last item on every level in the hierarchy. Only
works for levels that contain more than one
item.

SeparatorTransformatio
nName

Name of the transformation rendered
between items.

If hierarchical data is loaded, the separator is
placed only between items on the same level
(i.e. not between a parent item and its child).

SingleTransformationNa
me

Name of the transformation applied in cases
where there is only one item on a level in the
hierarchy.

TransformationName Name of the transformation applied to all
displayed items that are not covered by a
specialized transformation type (e.g.
alternating items, first items etc.).

Configuring the pager

The QueryUniView control has a built-in UniPager control which can be enabled by the EnablePaging
property. The following templates can be defined within the tags of the QueryUniView control to
determine the design of the pager. Please refer to the UniPager -> Structure topic to see what individual
templates represent.

Template Name Description Sample Value

PagerCurrentPageTemp
late

Code of the template used for the current
page in the pager. Use <%# Eval("Page") %
> to get the current page number, <%# Eval
("PageURL") %> to get page the URL or <%
Eval("PageLink") %> to get the page link.

<%# Eval("Page")
%>

PagerDirectPageTempl
ate

Code of the template used for direct page
changing. Use a TextBox or DropDownList
control with ID directPageControl to register
the page change event.

Page
<asp:TextBox
ID="DirectPageControl"
runat="server"

http://devnet.kentico.com/docs/7_0/devguide/hierarchical_transformations.htm
http://devnet.kentico.com/docs/7_0/devguide/hierarchical_transformations.htm

Kentico CMS 7.0 Controls156

© 2014 Kentico Software

Style="width: 25px;" />
of
<%# Eval("Pages") %>

PagerFirstPageTemplat
e

Code of the template used for the link to the
first page in the pager. Use <%# Eval
("FirstURL") %> to get the link to the first
page.

<a href="<%# Eval
("FirstURL") %>">|<</
a>

PagerLastPageTemplat
e

Code of the template used for the link to the
last page in the pager. Use <%# Eval
("LastURL") %> to get the link to the last
page.

<a href="<%# Eval
("LastURL") %>">>|</
a>

PagerLayoutTemplate Code of the template used for the overall
pager layout.

PagerNextGroupTempla
te

Code of the template used for the link to the
next group of pages. Use <%# Eval
("NextGroupURL") %> to get the link to the
next group.

<a href="<%# Eval
("NextGroupURL") %
>">...

PagerNextPageTemplat
e

Code of the template used for the link to the
next page. Use <%# Eval("NextURL") %> to
get the link to the next page.

<a href="<%# Eval
("NextURL") %>">>

PagerPageNumbersSep
aratorTemplate

Code of the template used for the separator
between page links in the pager.

PagerPageNumbersTe
mplate

Code of the template used for page links in
the pager. Use <%# Eval("Page") %> to get
the current page number, <%# Eval
("PageURL") %> to get the URL of the
current page or <%# Eval("PageLink") %> to
get the page link.

<a href="<%# Eval
("PageURL") %>"><%# Eval
("Page") %>

PagerPreviousGroupTe
mplate

Code of the template used for the link to the
previous group of pages. Use <%# Eval
("PreviousGroupURL") %> to get the link to
the next group.

<a href="<%# Eval
("PreviousGroupURL") %
>">...

PagerPreviousPageTem
plate

Code of the template used for the link to the
previous page. Use <%# Eval
("PreviousURL") %> to get the link to the
next page.

<a href="<%# Eval
("PreviousURL") %>"><

1.8.6.3.7.4 Appearance and styling

The appearance of the QueryUniView control is determined by the transformations specified by its
TransformationName properties or by the code of the ItemTemplates inherited from the UniView
control and by certain other properties. These are described in more detail in the Configuration topic.

Kentico CMS Controls 157

© 2014 Kentico Software

1.8.7 Edit mode buttons

1.8.7.1 Overview

The controls in this section display buttons that allow users to create, edit or delete Kentico CMS
documents. These buttons are only displayed in the Edit mode of CMS Desk and in On-site editing
mode.

Available controls:

CMSEditModeButtonAdd
CMSEditModeButtonEditDelete

1.8.7.2 CMSEditModeButtonAdd

1.8.7.2.1 Overview

The CMSEditModeButtonAdd control displays a button that is shown in the Edit mode of CMS Desk and
allows content editors to add a new document when they click it. It provides an intuitive way of creating
new documents.

The following topics are available to help you familiarize yourself with the CMSEditModeButtonAdd
control:

Getting started - contains a quick step-by-step tutorial that allows you to learn the basics of using
the control
Configuration - describes and explains the properties that can be set for the control
Appearance and styling - lists which CSS classes can be used with the control

1.8.7.2.2 Getting started

The following tutorial will show you how to display a button, that creates new news documents, on an
ASPX page template using the CMSEditModeButtonAdd control:

1. Create a new Web form and prepare it to be an ASPX page template according to the guide found in
the Using ASPX page templates topic.

2. Switch to its Design tab, drag and drop a CMSEditModeButtonAdd control from the toolbox onto the
form and set its following properties:

ClassName: CMS.News
Path: /News/

This tells the control what type of documents it should create and sets the path to the document under
which they should be added.

The code of the control will look like this:

<cms:CMSEditModeButtonAdd ID="CMSEditModeButtonAdd1" runat="server" Path="/News/"

ClassName="CMS.News" />

3. Switch to the code behind of the page and make sure it has the following references at the beginning

Kentico CMS 7.0 Controls158

© 2014 Kentico Software

of the code:

[C#]

using CMS.UIControls;

using CMS.CMSHelper;

using CMS.PortalEngine;

using CMS.GlobalHelper;

4. Now add the following code to the Page_Load method:

[C#]

// Register edit mode buttons script

if (CMSContext.ViewMode != ViewModeEnum.LiveSite)

{

 ScriptHelper.RegisterClientScriptBlock(this, typeof(string),

ScriptHelper.EDIT_DOCUMENT_SCRIPT_KEY, ScriptHelper.EditDocumentScript);

}

This is necessary if you wish to use the control individually on an ASPX page template.

5. Save the changes to the web form. Now if you look at the page using the created template on some
website in the Edit mode of CMS Desk, a button like the one in the following image will be displayed:

If you press the button, it will redirect you to the form used to create new news documents under the /
News page.

1.8.7.2.3 Configuration

The following properties of the CMSEditModeButtonAdd control can be set or used in the API:

Property Name Description Sample Value

ClassName
Document type that specifies the type of the
document that should be created.

"cms.article"

Path Alias path of the parent document under
which the new document should be created.
If omitted, the document is added under the
currently selected document.

"/whitepapers"

StopProcessing Indicates if processing of the control should
be stopped and the control should not
retrieve or display any data.

Text Custom caption of the button. If not set, the
default text "Add new" is displayed.

"Add new article"

Kentico CMS Controls 159

© 2014 Kentico Software

1.8.7.2.4 Appearance and styling

The appearance of the CMSEditModeButtonAdd control is determined by the CSS class it uses.

You can use the following CSS class to modify the design of the control:

Class Name Description

CMSEditModeButtonAdd CSS style of the <A> element.

The recommended place to define this class is in a stylesheet in the Kentico CMS administration
interface at Site Manager -> Development -> CSS stylesheets. These stylesheets can be applied to
individual documents (pages) that contain the control in CMS Desk -> Content -> Edit -> Properties ->
General -> CSS stylesheet.

1.8.7.3 CMSEditModeButtonEditDelete

1.8.7.3.1 Overview

The CMSEditModeButtonEditDelete control displays a pair of buttons that are shown when editing
documents on the Page tab of CMS Desk and in live site editing mode. They allow content editors to
edit or delete documents when clicked. This provides an intuitive way of editing/deleting documents.

Many CMS listing controls (and web parts), such as the CMS Repeater (Repeater) have the
ShowEditDeleteButtons (Show Edit and Delete buttons) property, which causes this control to
automatically be shown next to every displayed document. The path of these controls will automatically
be set to that of the corresponding displayed document.

The following topics are available to help you familiarize yourself with the CMSEditModeButtonEditDelete
control:

Getting started - contains a quick step-by-step tutorial that allows you to learn the basics of using
the control
Configuration - describes and explains the properties that can be set for the control
Appearance and styling - lists which CSS classes can be used with the control

1.8.7.3.2 Getting started

The following tutorial will show you how to display a pair of buttons, that can edit or delete a specific
news document, on an ASPX page template using the CMSEditModeButtonEditDelete control:

1. Create a new Web form and prepare it to be an ASPX page template according to the guide found in
the Using ASPX page templates topic.

2. Switch to its Design tab, drag and drop a CMSEditModeButtonEditDelete control from the toolbox
onto the form and set its Path property to /News/New-Consulting-Services.

This sets the path to the document that the control should edit or delete.

The code of the control will look like this:

Kentico CMS 7.0 Controls160

© 2014 Kentico Software

<cms:CMSEditModeButtonEditDelete ID="CMSEditModeButtonEditDelete1" runat="server"

Path="/News/New-Consulting-Services" />

3. Switch to the code behind of the page and make sure it has the following references at the beginning
of the code:

[C#]

using CMS.UIControls;

using CMS.CMSHelper;

using CMS.PortalEngine;

using CMS.GlobalHelper;

4. Now add the following code to the Page_Load method:

[C#]

// Register edit mode buttons script

if (CMSContext.ViewMode != ViewModeEnum.LiveSite)

{

 ScriptHelper.RegisterClientScriptBlock(this, typeof(string),

ScriptHelper.EDIT_DOCUMENT_SCRIPT_KEY, ScriptHelper.EditDocumentScript);

}

This is necessary if you wish to use the control individually on an ASPX page template.

5. Save the changes to the web form. Now if you look at the page using the created template on some
website in the Edit mode of CMS Desk, a pair of buttons as seen in the following image will be
displayed:

If you press the Edit button, it will redirect you to the form used to edit the /News/Your-first-news
document. If you click the Delete button, the same document will be deleted.

Use in transformations

If you wish to use this control in the code of a transformation, you can do so by adding code similar to
the following:

<cms:CMSEditModeButtonEditDelete runat="server" id="btnEditDelete" Path='<%# Eval

("NodeAliasPath") %>' />

The path will automatically be set to that of the currently transformed document.

Kentico CMS Controls 161

© 2014 Kentico Software

1.8.7.3.3 Configuration

The following properties of the CMSEditModeButtonEditDelete control can be set or used in the API:

Property Name Description Sample Value

DeleteText Custom caption of the delete button. If not
set, the default text "Delete" is displayed.

"Delete article"

EditMode May be used to specify which of the buttons
should be displayed. Possible options are
both, or just the Edit or Delete button. By
default, both buttons are included.

"Both"
"Edit"
"Delete"

EditText Custom caption of the edit button. If not set,
the default text "Edit" is displayed.

"Edit article"

Path Alias path of the document to be edited/
deleted.

"/whitepapers/myfirstpaper"

1.8.7.3.4 Appearance and styling

The appearance of the CMSEditModeButtonEditDelete control is determined by the CSS classes it
uses.

You can use the following CSS classes to modify the design of the control:

Class Name Description

CMSEditModeButtonEdit CSS style of the edit button <A> element.

CMSEditModeButtonDelete CSS style of the delete button <A> element.

The recommended place to define these classes is in a stylesheet in the Kentico CMS administration
interface at Site Manager -> Development -> CSS stylesheets. These stylesheets can be applied to
individual documents (pages) that contain the control in CMS Desk -> Content -> Edit -> Properties ->
General -> CSS stylesheet.

1.8.8 Editable regions for ASPX page templates

1.8.8.1 Overview

The controls in this section allow the creation of editable regions that can be used by editors to fill in
content. They provide editing functionality when the page is viewed on the Page mode of CMS Desk or
in On-site editing mode. Once some content is entered, it is displayed on the live site. The controls are
only compatible with Kentico CMS ASPX page templates.

Please note:

If you wish to have this kind of functionality on Portal engine templates, use the
Editable text and Editable image web parts instead.

http://devnet.kentico.com/docs/7_0/devguide/onsite_editing_overview.htm
http://devnet.kentico.com/docs/7_0/devguide/aspx_page_templates_how_it_works.htm
http://devnet.kentico.com/docs/7_0/devguide/portal_engine_overview.htm

Kentico CMS 7.0 Controls162

© 2014 Kentico Software

Available controls:

CMSEditableImage
CMSEditableRegion
CMSPageManager

1.8.8.2 CMSEditableImage

1.8.8.2.1 Overview

The CMSEditableImage control displays an editable region on the Page tab of CMS Desk that allows
content editors to select an image. The image may also be selected when the page containing the
control is viewed in On-site editing mode. The chosen image is then displayed without the selection
interface on the live version of the website.

Please note

This control is compatible only with ASPX page templates. On portal engine pages, use
the Text & Images -> Editable image web part instead of this control.

This control requires either the CMSPageManager or CMSPortalManager control to regulate the flow of
data to/from the editable region, it doesn't communicate with the database directly. There only has to be
one Manager control for any number of CMSEditableImage controls.

The following topics are available to help you familiarize yourself with the CMSEditableImage control:

Getting started - contains a quick step-by-step tutorial that allows you to learn the basics of using
the control
Configuration - describes and explains the properties that can be set for the control

http://devnet.kentico.com/docs/7_0/devguide/onsite_editing_overview.htm
http://devnet.kentico.com/docs/7_0/webparts/EditableImage_overview.htm

Kentico CMS Controls 163

© 2014 Kentico Software

1.8.8.2.2 Getting started

The following is a step-by-step tutorial that will show you how to display a region which can be used to
select and display images using the CMSEditableImage control:

1. Create a new Web form in your website installation directory under the CMSTemplates/
CorporateSite folder and check the Select master page box.

2. The Select a Master Page dialog appears. Choose the folder CMSTemplates/CorporateSite and
choose the root.master file and click OK..

3. Follow the remaining steps of the guide found in the Using ASPX page templates topic.

4. Switch to the Design tab and drag and drop a CMSEditableImage control from the toolbox onto the
form and set its ImageTitle property to Image Example.

5. Switch to the Source tab. The code of the CMSEditableImage control should look like this:

<cms:CMSEditableImage ID="CMSEditableImage1" runat="server" ImageTitle="Image

Example" />

It's not necessary to add the CMSPageManager control onto the web form, as there is already a
CMSPortalManager control on the root.master master page.

6. Save the changes to the web form. Now if you look at the page using the created template on some
website, it will display an image selection dialog in the Edit mode of CMS Desk similar to the following:

Now if you select an image and press the Save button, the image will be displayed on the live site
version of the page without the selection dialog.

1.8.8.2.3 Configuration

The following properties of the CMSEditableImage control can be set or used in the API:

Property Name Description Sample Value

AlternateText ALT text of the image displayed on the
website.

DisplaySelectorTextBox Indicates whether a textbox with the image
path should be displayed in Edit mode.

ImageControl Returns the instance of the used Image
control.

ImageCSSClass Sets or gets the name of the image CSS
class.

ImageHeight Image height in pixels - the image will be

Kentico CMS 7.0 Controls164

© 2014 Kentico Software

resized to this height.

ImageStyle Sets or gets the style of the image.

ImageTitle Title displayed above the image in Edit
mode.

ImageWidth
Image width in pixels - the image will be
resized to this width.

1.8.8.3 CMSEditableRegion

1.8.8.3.1 Overview

The CMSEditableRegion control displays an editable region on the Page tab of CMS Desk that allows
website editors to enter a wide range of content. The region may also be edited when the page
containing the control is viewed in On-site editing mode. The content is then displayed without the
editing interface on the live version of the website.

Please note

This control is compatible only with ASPX page templates. On portal engine pages, use
the Text & Images -> Editable text web part instead of this control.

This control requires either the CMSPageManager or CMSPortalManager control to regulate the flow of
data to/from the editable region, it doesn't communicate with the database directly. There only has to be
one Manager control for any number of CMSEditableRegion controls.

The following topics are available to help you familiarize yourself with the CMSEditableRegion control:

Getting started - contains a quick step-by-step tutorial that allows you to learn the basics of using
the control
Configuration - describes and explains the properties that can be set for the control
Appearance and styling - lists which CSS classes can be used with the control and how its
appearance can be modified

1.8.8.3.2 Getting started

The following is a step-by-step tutorial that will show you how to display an editable region, which works
as an HTML editor, using the CMSEditableRegion control:

1. Create a new Web form in your website installation directory under the CMSTemplates/
CorporateSite folder and check the Select master page box.

2. The Select a Master Page dialog appears. Choose the folder CMSTemplates/CorporateSite and
choose the root.master file and click OK..

3. Follow the remaining steps of the guide found in the Using ASPX page templates topic.

4. Switch to the Design tab and drag and drop a CMSEditableRegion control from the toolbox onto the

http://devnet.kentico.com/docs/7_0/devguide/onsite_editing_overview.htm
http://devnet.kentico.com/docs/7_0/webparts/editabletext_overview.htm

Kentico CMS Controls 165

© 2014 Kentico Software

form and set its following properties:

RegionTitle: Region Example
DialogHeight: 200
RegionType: HTMLEditor
HTMLAreaToolbarLocation: In

This specifies the height of the editable region, tells the control that the region should act as an HTML
editor and that the toolbar of the editor should be displayed directly above the region.

5. Switch to the Source tab. The code of the CMSEditableRegion control should look like this:

<cms:CMSEditableRegion ID="CMSEditableRegion1" runat="server" RegionTitle="Region

Example"

DialogHeight="200" RegionType="HTMLEditor" HtmlAreaToolbarLocation="In" />

It's not necessary to add the CMSPageManager control onto the web form, as there is already a
CMSPortalManager control on the root.master master page.

6. Save the changes to the web form. Now if you look at the page using the created template on some
website, it will display an editable region in the Edit mode of CMS Desk similar to the following:

Now if you enter some content and press the Save button, it will be displayed on the live site version of
the page without the editor.

1.8.8.3.3 Configuration

The following properties of the CMSEditableRegion control can be set or used in the API:

Property Name Description Sample Value

DialogHeight Height of the displayed region in pixels.

DialogWidth Width of the displayed region in pixels.

HtmlAreaToolbar Name of the HTML editor toolbar set. This is
only used if the RegionType property is set
to HtmlEditor.

"Default"

HtmlAreaToolbarLocatio
n

Determines the location of the HTML editor
toolbar. This is only used if the RegionType

"In" for inline - directly above
the region

Kentico CMS 7.0 Controls166

© 2014 Kentico Software

property is set to HtmlEditor.
"Out:CKToolbar" for shared -
at the top of the page

InheritContent Indicates if the content of the editable region
should be inherited from the parent page
(menu item) document.

MaxLength Maximum length of the content (in number of
characters).

MinLength Minimum length of the content (in number of
characters).

RegionTitle Title displayed about the editable region in
editing mode.

RegionType Type of server control which is displayed in
the editable region. It can be a textbox,
textarea or HTML editor.

"HtmlEditor"
"TextArea"
"TextBox"

WordWrap Indicates whether text displayed by the
control should use word wrapping if the text
area RegionType is selected.

Please note: the remaining properties are used internally by the system and should not be modified
manually.

1.8.8.3.4 Appearance and styling

The appearance of the CMSEditableRegion control is determined by the CSS classes it uses and by
some of its properties.

You can use the following CSS classes to modify the design of the control:

Class Name Description

CMSEditableRegionEdit Style of the main <TABLE> element.

CMSEditableRegionTitle Style of the <TD> element containing the error title.

CMSEditableRegionError Style of the <TD> element containing the error message.

The recommended place to define these classes is in a stylesheet in the Kentico CMS administration
interface at Site Manager -> Development -> CSS stylesheets. These stylesheets can be applied to
individual documents (pages) that contain the control in CMS Desk -> Content -> Edit -> Properties ->
General -> CSS stylesheet.

1.8.8.4 CMSPageManager

1.8.8.4.1 Overview

The CMSPageManager control is required for pages with editable regions, as it manages the flow of data
to/from the CMSEditableRegion and CMSEditableImage controls. It ensures that the content of editable
regions is loaded from and saved to the database. It also displays the "Save" dialog.

Kentico CMS Controls 167

© 2014 Kentico Software

Please note

The CMSPageManager control is obsolete. It is still supported for the purposes of
backward compatibility, but we recommend using the CMSPortalManager instead,
which provides all of the same functionality and more. Further information can be found
in Developer's Guide -> .. -> Creating ASPX master pages.

Data Source

Content is loaded from the nearest Page (menu item) document in the alias path specified through the
URL or through the DefaultPageAliasPath property. The content is stored in the following format:

<content>

<region id=”ID of the CMSEditableRegion control related to this content section”>

<!CDATA[content of the editable region]>

</region>

<region id=”...”>

<!CDATA[content of the editable region]>

</region>

</content>

The following topics are available to help you familiarize yourself with the CMSEditableRegion control:

Getting started - describes the basics of using the control
Configuration - describes and explains the properties that can be set for the control
Appearance and styling - lists which CSS classes can be used with the control

1.8.8.4.2 Getting started

To use the CMSPageManager control, simply drag and drop it from the toolbox onto an ASPX page
template that contains CMSEditableImage or CMSEditableRegion controls. A common place to have the
control is on the master page, as this allows it to manage editable regions on all page templates that
use this master page.

1.8.8.4.3 Configuration

The following properties of the CMSPageManager control can be set or used in the API:

Property Name Description Sample Value

CacheDependencies List of the cache keys on which the cached
data depends. When the cache item
changes, the cache of the control is cleared.
Each item (dependency) must be on one
line.

If you leave this property empty, default

cms.user|all

http://devnet.kentico.com/docs/7_0/devguide/using_the_master_pages.htm
http://devnet.kentico.com/docs/7_0/devguide/using_the_master_pages.htm

Kentico CMS 7.0 Controls168

© 2014 Kentico Software

dependencies will be used.

CacheItemName

Name of the cache item the control will use.

By setting this name dynamically, you can
achieve caching based on a URL parameter
or some other variable - simply enter the
value of the parameter.

If no value is set, the control stores its
content in the item named "URL|ControlID".

 "homepage_pagemanager"

CacheMinutes Number of minutes the retrieved content is
cached for.

Zero indicates that the content will not be
cached.
-1 indicates that the site-level settings
should be used.

This parameter allows you to set up caching
of content so that it doesn't have to be
retrieved from the database each time a user
requests the page.

CheckPermissions Allows you to specify whether to check
permissions of the current user. If the value
is 'false' (default value) no permissions are
checked. Otherwise, only nodes for which
the user has read permission can be
selected.

CMSEditableControls Returns an array containing the managed
editable controls (CMSEditableImage or
CMSEditableRegion).

CombineWithDefaultCul
ture

Indicates if the results should be combined
with default language versions in case the
translated version is not available. This
property is applied only if you do not set the
TreeProvider property manually.

CultureCode Culture code of documents to be selected,
such as en-us. If not specified, it's read from
the user's session or the default value is
used.

"en-us"

DefaultPageAliasPath Default path that is used if no alias path is
provided in the query string or through a
friendly URL.

"/home"

ErrorMessage Gets or sets the error message string.

InfoMessage Gets or sets the information message string.

IsAuthorized Is true if the current user is authorized for the

Kentico CMS Controls 169

© 2014 Kentico Software

current document.

PageAliasPath The alias path of the current page.

PreserveContent Allows you to specify whether the content of
non-existing or not visible regions should be
preserved when the content is saved.

SaveChanges Is true if the current changes to the page
should be saved.

SiteName Specifies the site code name.

TagKey Overrides the generation of the SPAN tag
with a custom tag.

TreeProvider Tree provider instance used to access data.
If no TreeProvider is assigned, a new
TreeProvider instance is created
automatically.

ViewMode Gets or sets the current page mode. "Edit"
"Preview"
"LiveSite"

1.8.8.4.4 Appearance and styling

The appearance of the CMSPageManager control is determined by the CSS classes it uses.

You can use the following CSS classes to modify the design of the control:

Class Name Description

CMSPageManagerError Style of the error label.

CMSPageManagerLabel Style of the standard label.

CMSPageManagerTextLink Style of the link.

CMSPageManagerTDLabel Style of the TD element that contains text with save confirmation
message.

The recommended place to define these classes is in a stylesheet in the Kentico CMS administration
interface at Site Manager -> Development -> CSS stylesheets. These stylesheets can be applied to
individual documents (pages) that contain the control in CMS Desk -> Content -> Edit -> Properties ->
General -> CSS stylesheet.

1.8.9 Search Controls

1.8.9.1 Overview

SQL search controls allow users to search through the content of a website's documents. The controls
use the SQL search engine, which utilizes standard queries to find results in the Kentico CMS
database.

Note: Kentico CMS provides an index-based Smart search engine. The smart search has significantly

http://devnet.kentico.com/docs/7_0/devguide/smart_search_overview.htm

Kentico CMS 7.0 Controls170

© 2014 Kentico Software

better performance than the SQL search.

The SQL search uses the following queries:

Automatically generated queries for the data of individual document types. To override the search
query for a document type, create a new query named searchtree in Site Manager -> Development
-> Document types -> Edit document type -> Queries.
The cms.root.searchdocuments query for common fields (such as the document name).
The cms.root.searchattachments query for files uploaded as attachments. To search uploaded
files, you need to configure the system for full-text search in files.

Available controls:

CMSSearchDialog
CMSSearchResults

1.8.9.2 CMSSearchDialog

1.8.9.2.1 Overview

The CMSSearchDialog control allows users to enter search expressions. Users can optionally specify
the search scope (where to search) and search mode (how to search). To display the results of the
search, you need to connect a CMSSearchResults control. The CMSSearchDialog control is not
connected to a data source — it only communicates with users. The controls use the SQL search
engine, which utilizes standard queries to find results in the Kentico CMS database.

The control passes the search expression through the page's URL using the searchtext query string
parameter.

The portal engine equivalent of the CMSSearchDialog control is the Full-text search -> SQL Search
dialog web part.

The following topics are available to help you familiarize yourself with the CMSSearchDialog control:

Getting started - contains a step-by-step tutorial that allows you to learn the basics of using the
control
Configuration - describes and explains the properties that can be set for the control
Structure - continues the tutorial from Getting started, shows a more advanced example of how the
control can be configured and demonstrates what individual template properties affect
Appearance and styling - lists which CSS classes can be used with the control and how its
appearance can be modified

1.8.9.2.2 Getting started

The following is a step-by-step tutorial that will show you how to create a working search dialog using
the CMSSearchDialog and CMSSearchResults controls:

1. Create a new Web form somewhere in your website installation directory.

2. Switch to its Design tab, drag and drop a CMSSearchDialog control from the toolbox onto the form.

3. Now drag and drop a CMSSearchResults control form the toolbox onto the form below the

http://devnet.kentico.com/docs/7_0/devguide/configuratin_of_full_text_search.htm

Kentico CMS Controls 171

© 2014 Kentico Software

CMSSearchDialog and set its CMSSearchDialogID property to CMSSearchDialog1.

The code of the two controls should look like this:

<cms:CMSSearchDialog ID="CMSSearchDialog1" runat="server" />

<cms:CMSSearchResults ID="CMSSearchResults1" runat="server"

CMSSearchDialogID="CMSSearchDialog1">

</cms:CMSSearchResults>

4. Save the changes to the web form. Now right-click it in the Solution explorer and select View in
Browser. The resulting page will contain a functional search dialog that will allow you to search the
sample Corporate Site:

Continue this tutorial in the Structure topic to see how to create a more advanced search dialog.

1.8.9.2.3 Configuration

The following properties of the CMSSearchDialog control can be set or used in the API:

Property Name Description Sample Value

CustomQueryStringDat
a

Gets or sets a custom query string which is
placed after search querystring data, do not
use & or ? at the start of the custom query
string.

SearchExpression Entered word(s) to be searched for.

SearchMode Search mode - any word, all words or exact
phrase.

"AllWords"
"AnyWord"
"ExactPhrase"

SearchScope Indicates whether all content or only the
current section should be searched.

"SearchAllContent"
"SearchCurrentSection"

Kentico CMS 7.0 Controls172

© 2014 Kentico Software

ShowSearchMode Indicates whether search mode settings
should be displayed.

ShowSearchScope Indicates whether search scope settings
should be displayed.

StopProcessing Indicates if processing of the control should
be stopped and the control should not
retrieve or display any data.

CMSSearchDialog Events

Event Name Description

DoSearch Occurs when a user submits the dialog.

The CMSSearchDialog contains the following controls. Refer to the Structure topic to see what individual
controls represent. They can be accessed in your code behind through the following properties:

Property Name Description

SearchButton Search submit button.

SearchForLabel SearchFor label control.

SearchForTextBox SearchFor textbox.

SearchModeLabel SearchMode label.

SearchModeList SearchMode drop-down list.

SearchScopeLabel SearchScope label.

SearchScopeList SearchScope drop-down list.

1.8.9.2.4 Structure

This topic shows an example of how the CMSSearchDialog control looks when its ShowSearchMode
and ShowSearchScope properties are enabled. If you wish to create this example for yourself, please
follow the tutorial in the Getting started topic, then continue with the following steps:

1. Make sure that the following properties of the CMSSearchDialog are set:

ShowSearchMode: True
ShowSearchScope: True

The code of the CMSSearchDialog control should now look like this:

<cms:CMSSearchDialog ID="CMSSearchDialog1" runat="server"

 ShowSearchMode="True" ShowSearchScope="True" />

2. Save the changes to the web form. Now right-click it in the Solution explorer and select View in

Kentico CMS Controls 173

© 2014 Kentico Software

Browser. The resulting page should look like the following diagram (without the descriptions), which
shows the structure of the CMSSearchDialog control:

Individual areas correspond with the controls the dialog is composed of.

1.8.9.2.5 Appearance and styling

The appearance of the CMSSearchDialog control is determined by the CSS classes it uses and by
some of its properties.

You can use the following CSS classes to modify the design of the control:

Class Name Description

CMSSearchDialogSearchBu
tton

CSS class of the search button.

CMSSearchDialogSearchFo
rLabel

CSS class of the "Search for:" label.

CMSSearchDialogSearchFo
rTextBox

CSS class of the search expression text box.

CMSSearchDialogSearchM
odeDropDownList

CSS class of the search mode drop down list.

CMSSearchDialogSearchM
odeLabel

CSS class of the "Search mode:" label.

CMSSearchDialogSearchSc
opeDropDownList

CSS class of the search scope drop down list.

CMSSearchDialogSearchSc
opeLabel

CSS class of the "Search Scope:" label.

The recommended place to define these classes is in a stylesheet in the Kentico CMS administration
interface at Site Manager -> Development -> CSS stylesheets. These stylesheets can be applied to
individual documents (pages) that contain the control in CMS Desk -> Content -> Edit -> Properties ->
General -> CSS stylesheet.

The design can also be modified in your code behind files by configuring individual controls contained in
the CMSSearchDialog. The properties that can be used to access them are listed in the Configuration
topic.

Kentico CMS 7.0 Controls174

© 2014 Kentico Software

1.8.9.3 CMSSearchResults

1.8.9.3.1 Overview

The CMSSearchResults control displays search results according to parameters provided from the
CMSSearchDialog control. The controls use the SQL search engine, which utilizes standard queries to
find results in the Kentico CMS database. The control can also receive search results using the
CMS.DocumentEngine.TreeProvider.Search() method.

The SQL search uses the following queries:

Automatically generated queries for the data of individual document types. To override the search
query for a document type, create a new query named searchtree in Site Manager -> Development
-> Document types -> Edit document type -> Queries.
The cms.root.searchdocuments query for common fields (such as the document name).
The cms.root.searchattachments query for files uploaded as attachments. To search uploaded
files, you need to configure the system for full-text search in files.

The control combines the results of all relevant queries into a single data source and displays the data.

The portal engine equivalent of the CMSSearchResults control is the Full-text search -> SQL Search
results web part.

The following topics are available to help you familiarize yourself with the CMSSearchResults control:

CMSSearchDialog -> Getting started - contains a quick step-by-step tutorial that allows you to learn
the basics of using the control
Configuration - describes and explains the properties that can be set for the control
Structure - demonstrates what individual templates and transformations affect
Appearance and styling - describes how the design of the control can be modified

1.8.9.3.2 Configuration

The following properties of the CMSSearchResults control can be set or used in the API:

Property Name Description Sample Value

CacheDependencies List of the cache keys on which the cached
data depends. When the cache item
changes, the cache of the control is cleared.
Each item (dependency) must be on one
line.

If you leave this property empty, default
dependencies will be used.

cms.user|all

CacheItemName Name of the cache item the control will use.

By setting this name dynamically, you can
achieve caching based on a URL parameter
or some other variable - simply enter the
value of the parameter.

"mycachename" +
Request.QueryString["id"]
.ToString()

http://devnet.kentico.com/docs/7_0/devguide/configuratin_of_full_text_search.htm

Kentico CMS Controls 175

© 2014 Kentico Software

If no value is set, the control stores its
content in the item named "URL|ControlID".

CacheMinutes Number of minutes the retrieved content is
cached for.

Zero indicates that the content will not be
cached.

-1 indicates that the site-level settings
should be used.

This parameter allows you to set up caching
of content so that it doesn't have to be
retrieved from the database each time a user
requests the page.

CheckPermissions Allows you to specify whether to check
permissions of the current user. If the value
is 'false' (default value) no permissions are
checked. Otherwise, only nodes for which
the user has read permission are selected.

ClassNames Specifies which document types should be
selected. Several values separated by a
semicolon can be entered.

"cms.news"
or
"cms.news;cms.article"

CMSSearchDialogID You can use this property to specify the ID
of the source CMSSearchDialog control that
provides search parameters.

"CMSSearchDialog1"

CombineWithDefaultCul
ture

Indicates whether documents from the
default culture version should be used if they
are not available in the selected culture.
This property is applied only if you do not set
the TreeProvider property manually.

CultureCode Culture code of documents to be selected,
such as en-us. If not specified, it's read from
the user's session or the default value is
used.

"en-us"

DataSource Gets or sets a DataSet containing values
used to fill the items of the control.

EnablePaging Enables the paging of search results. True
by default.

FilterControl Gets or sets the appropriate filter control
used to limit the data read by this control.

FilterName Gets or sets the code name of the
appropriate filter control used to limit the
data read by this control.

FilterOutDuplicates Indicates if duplicated (linked) documents

Kentico CMS 7.0 Controls176

© 2014 Kentico Software

should be filtered out from the data.

IgnoreTransformations Indicates whether the
TransformationName property should be
ignored and the templates for direct access
(described further below) used instead.

NoResultsLabel The label control that should be displayed
when there are no results.

OrderBy ORDER BY part of the SQL statement. "NewsReleaseDate DESC"

PagerControl
DataPager object used for the paging of
search results.

QueryStringKey Name of the query string parameter that
contains the current page number (if paging
is used).

"pagenumber"

SearchExpression Word(s) to be searched for.

SearchMode Search mode - any word, all words or exact
phrase.

"AllWords"
"AnyWord"
"ExactPhrase"

SearchScope Indicates whether all content or only the
current section should be searched.

"SearchAllContent"
"SearchCurrentSection"

SelectOnlyPublished Indicates whether only published documents
should be selected.

SiteName Specifies the site code name.

StopProcessing Indicates if processing of the control should
be stopped and the control should not
retrieve or display any data.

TagKey Overrides the generation of the SPAN tag
with a custom tag.

TransformationName Name of the transformation applied to
displayed search results in format
<document type code
name>.<transformation name>.

The default transformation is
cms.root.searchresults.

"cms.searchresults"

WhereCondition WHERE clause used for the SQL search
queries.

" DocumentModifiedWhen >
'1/1/2007' "

OrderBy ORDER BY clause used for the SQL search
queries.

"DocumentModifiedWhen
DESC"

The CMSSearchResults control accepts the following querystring (URL) parameters:

Parameter Name Description Sample Value

Kentico CMS Controls 177

© 2014 Kentico Software

searchtext Searched text. products

searchmode Search mode. allwords
exactphrase
anyword (default value)

1.8.9.3.3 Structure

This topic shows an example of how the CMSSearchResults control can be configured. If you wish to
create this example for yourself, please follow the tutorial in the CMS Search Dialog -> Getting started
topic, then continue with the following steps:

1. Add the code marked by the CMSSearchResults templates comments between the <cms:
CMSSearchResults> tags. The overall code of the CMSSearchResults control should look like this:

<cms:CMSSearchResults ID="CMSSearchResults1" runat="server"

CMSSearchDialogID="CMSSearchDialog1">

 <%-- CMSSearchResults templates

--- --%>

 <HeaderTemplate>

 <hr />

 </HeaderTemplate>

 <FooterTemplate>

 <hr />

 </FooterTemplate>

 <%-- CMSSearchResults templates

--- --%>

</cms:CMSSearchResults>

2. Save the changes to the web form. Now right-click it in the Solution explorer and select View in
Browser. The resulting page should look like the following diagram (without the descriptions), which
shows the structure of the CMSSearchResults control. Individual areas are described below.

Kentico CMS 7.0 Controls178

© 2014 Kentico Software

SearchDialog - the CMSSearchDialog control specified by the CMSSearchDialogID property.
HeaderTemplate - this area is defined by the code between the <HeaderTemplate> tags.
Search Result Items - this area is used to display the search results. It is defined by the
transformation specified by the TransformationName property (cms.root.searchresults by default) or
by the code between the <ItemTemplate tags> if the IgnoreTransformations property is enabled.
FooterTemplate - this areas is defined by the code between the <FooterTemplate> tags.
Pager - the built-in DataPager control, which is used for the paging of search results unless the
EnablePaging property is set to false. It can be accessed through the PagerControl property.

1.8.9.3.4 Appearance and styling

The appearance of the CMSSearchResults control is determined by the transformation specified in its
TransformationName property or by its templates.

The following templates can be defined:

Property Name Description Sample Value

FooterTemplate Code of the template used for the footer. <hr />

HeaderTemplate Code of the template used for the header. <hr />

ItemTemplate Code of the template applied to search result
items.

Kentico CMS Controls 179

© 2014 Kentico Software

1.9 UI Controls

1.9.1 Overview

UI Controls are user controls that provide the functionality of standard user interface elements, but offer
a higher degree of versatility and customization, and also support additional useful features. Many
examples of these controls can be found in the administration interface of Kentico CMS.

Available controls:

UniGrid
UniSelector

1.9.2 UniGrid

1.9.2.1 Overview

The UniGrid is a user control that can be used to display data in a highly customizable and flexible
table. It also supports many additional features such as paging, sorting, filtering, row selection and
action buttons. It is used extensively in the user interface of Kentico CMS.

Although this control may only be used within a Kentico CMS project, it can display data from an
external data source.

Please be aware that using the UniGrid control beyond its most basic functions requires some
knowledge of coding and Kentico CMS API.

The following topics are available to help you familiarize yourself with the UniGrid control:

Getting started - contains a step-by-step tutorial that allows you to learn the basics of using the
control.
Implementing custom functionality - contains a tutorial showing how custom modifications can be
added via code.
Configuration - describes and explains the properties that can be set for the control.
UniGrid definition - describes the format of the special configuration options used to determine the
structure and behaviour of the UniGrid control.

1.9.2.2 Getting started

The following is a step-by-step tutorial that will show you how to display a list of all users from the
Kentico CMS database in a table and implement a simple action button using the UniGrid user control:

1. Create a new Web form called User_UniGrid.aspx somewhere in your web project.

2. Add the following directives to the beginning of the page code to register the UniGrid control:

<%@ Register src="~/CMSAdminControls/UI/UniGrid/UniGrid.ascx" tagname="UniGrid"

tagprefix="cms" %>

<%@ Register Namespace="CMS.UIControls.UniGridConfig" TagPrefix="ug"

Assembly="CMS.UIControls" %>

Kentico CMS 7.0 Controls180

© 2014 Kentico Software

3. Modify the <%@ Page %> directive at the top of the code as in the following example:

<%@ Page Language="C#" AutoEventWireup="true" CodeFile="User_UniGrid.aspx.cs"

Inherits="UniGridExample_User_UniGrid" Theme="Default" %>

The Theme attribute was added with its value set to "Default", which specifies the default theme used to
style the UniGrid control. Please keep in mind that the value of the Inherits attribute depends on the
location of the web form, so the example above will not match your code exactly.

4. Now add the following code into the content area of the page (by default between the <div> tags
inside the <form> element):

<ajaxToolkit:ToolkitScriptManager ID="manScript" runat="server"

EnableViewState="false" />

<asp:Label runat="server" ID="lblInfo" EnableViewState="false" Visible="false" />

<cms:UniGrid ID="UserGrid" runat="server" />

This adds a standard label control, that will be used to display information messages, and the UniGrid
control itself (without any configuration for now). The label is not necessary for the functioning of the
UniGrid, but it can be very convenient, for example to display error messages.

The ToolkitScriptManager control is required by the UniGrid control. It is only there to ensure that the
example is functional by itself and will usually be included on your website's master page, so you do not
have to add it in real-world scenarios.

5. Now extend the definition of the UniGrid control according to the markup below:

<cms:UniGrid ID="UserGrid" runat="server" ObjectType="cms.user" Columns="UserID,

UserName" OrderBy="UserName">

 <GridActions>

 <ug:Action Name="edit" Caption="$General.Edit$" Icon="Edit.png" />

 </GridActions>

 <GridColumns>

 <ug:Column Source="UserName" Caption="$general.username$" Width="100%" />

 </GridColumns>

</cms:UniGrid>

The basic configuration example above defines only a single action (edit) and one column containing
user names, with no additional settings. The data to be displayed is retrieved from user objects, which is
achieved by setting the ObjectType property to cms.user. For more details and a full account of the
configuration options that can be specified for the UniGrid control, please see the Configuration and
UniGrid definition topics.

6. Switch to the code behind of the User_UniGrid.aspx web form and add the following code:

Warning: The name of the class will be different according to the location of your web form.

Kentico CMS Controls 181

© 2014 Kentico Software

[C#]

using CMS.SiteProvider;

using CMS.GlobalHelper;

public partial class UniGridExample_User_UniGrid : System.Web.UI.Page

{

 protected void Page_Load(object sender, EventArgs e)

 {

 // Assigns a handler for the OnAction event

 UserGrid.OnAction += userGrid_OnAction;

 }

 /// <summary>

 /// Handles the UniGrid's OnAction event.

 /// </summary>

 protected void userGrid_OnAction(string actionName, object actionArgument)

 {

 //Defines the code used to implement the edit action

 if (actionName == "edit")

 {

 //Sets an integer to the value of the actionArgument argument (UserID)

 int userId = ValidationHelper.GetInteger(actionArgument, 0);

 //Gets a UserInfo object of the user with the given ID

 UserInfo ui = UserInfoProvider.GetUserInfo(userId);

 //If user exists

 if (ui != null)

 {

 //Sets the information label to display the full name of the

edited user

 lblInfo.Visible = true;

 lblInfo.Text = "Edited user: " + HTMLHelper.HTMLEncode

(ui.FullName);

 }

 }

 }

}

This code demonstrates how to implement the task that should be performed when a UniGrid action is
used. The parameters of OnAction event handlers are explained below:

string actionName - is used to identify which action raised the event; this example only has one
action, but the UniGrid control often contains more in real scenarios. The name passed into this
parameter is defined through the UniGrid's configuration in the Name attribute of individual Action
elements.
object actionArgument - is used to pass the value of a data source column from the UniGrid row for
which the action was used. The used column can be specified through the configuration in the
commandargument attribute of individual Action elements, otherwise the first column in the data
source is used by default.

This example only displays the full name of the "edited" user in the label above the UniGrid when the edit
button is clicked, but any required action can be implemented in a similar fashion.

Kentico CMS 7.0 Controls182

© 2014 Kentico Software

7. Save the changes to all files. Now right-click the web form in the Solution Explorer and select View in
Browser. The resulting page should display a table containing user names and edit action buttons. If
you click one of the edit buttons, the full name of the user on the same row will be displayed above the
grid, similar to the following:

1.9.2.3 Implementing custom functionality

This tutorial follows up on the one from the Getting started topic and will demonstrate how custom
functionality can be added to action buttons and columns using the handler of the
OnExternalDataBound event:

1. Open the web form from the previous tutorial and its code behind file.

2. Modify the UniGrid control's definition as shown in the following code:

<cms:UniGrid ID="UserGrid" runat="server" ObjectType="cms.user" Columns="UserID,

UserName" OrderBy="UserName">

 <GridActions>

 <ug:Action Name="edit" Caption="$General.Edit$" Icon="Edit.png"

ExternalSourceName="edit_modify" />

 </GridActions>

 <GridColumns>

 <ug:Column Source="UserName" Caption="$general.username$" Width="100%"

ExternalSourceName="user_modify" />

 </GridColumns>

</cms:UniGrid>

This defines the externalsourcename attributes used to identify the action or column in the
OnExternalDataBound handler, where the required functionality can be implemented.

3. Switch to the code behind file, and add the sections marked in the following code:

[C#]

using System.Data;

Kentico CMS Controls 183

© 2014 Kentico Software

using CMS.SiteProvider;

using CMS.GlobalHelper;

public partial class UniGridExample_User_UniGrid : System.Web.UI.Page

{

 protected void Page_Load(object sender, EventArgs e)

 {

 // Assigns a handler for the OnAction event

 UserGrid.OnAction += userGrid_OnAction;

 // Assigns a handler for the OnExternalDataBound event

 UserGrid.OnExternalDataBound += userGrid_OnExternalDataBound;

 }

 /// <summary>

 /// Handles the Unigrid's OnExternalDataBound event.

 /// </summary>

 protected object userGrid_OnExternalDataBound(object sender, string

sourceName, object parameter)

 {

 switch (sourceName)

 {

 //Custom code for the edit action

 case "edit_modify":

 //Gets the value of the UserName column from the current data row

 string userName = ValidationHelper.GetString(((DataRowView)

((GridViewRow)parameter).DataItem).Row["UserName"], "");

 //If the user is the administrator

 if (userName == "administrator")

 {

 //Gets the ImageButton object of the edit action that is

being processed

 ImageButton button = ((ImageButton)sender);

 //Disables the button and changes its icon

 button.ImageUrl = "~/App_Themes/Default/Images/Design/

Controls/UniGrid/Actions/Editdisabled.png";

 button.Enabled = false;

 }

 break;

 //Custom code for the UserName column

 case "user_modify":

 //Returns modified user names to be displayed in the UniGrid

 return Convert.ToString(parameter) + " - modified";

 }

Kentico CMS 7.0 Controls184

© 2014 Kentico Software

 return parameter;

 }

 /// <summary>

 /// Handles the UniGrid's OnAction event.

 /// </summary>

 protected void userGrid_OnAction(string actionName, object actionArgument)

 {

 //Defines the code used to implement the edit action

 if (actionName == "edit")

 {

 //Sets an integer to the value of the actionArgument parameter (UserID)

 int userId = ValidationHelper.GetInteger(actionArgument, 0);

 //Gets a UserInfo object of the user with the given ID

 UserInfo ui = UserInfoProvider.GetUserInfo(userId);

 //If user exists

 if (ui != null)

 {

 //Sets the information label to display the full name of the

edited user

 lblInfo.Visible = true;

 lblInfo.Text = "Edited user: " + HTMLHelper.HTMLEncode(ui.FullName);

 }

 }

 }

}

This code demonstrates how custom functionality can be handled for actions and columns. The
parameters of OnExternalDataBound event handlers are explained below:

object sender - is used to pass the ImageButton object of the current action. For columns, it
contains a DataRowView of the current row.
string sourceName - is used to identify the action or column for which the functionality is
implemented. The name passed into this parameter is defined in the UniGrid's definition in the
ExternalSourceName attribute of individual Action or Column elements.
object parameter - is used to pass the value in the current cell of the column. For actions, it
contains a DataRowView of the current row.

This example modifies the edit action to be disabled for the UniGrid row containing the user named
administrator, and also alters the values displayed in the UserName column. Any custom functionality
required for actions or columns can be implemented in a similar fashion.

4. Save the changes to all files. Now right-click the web form in the Solution Explorer and select View in
Browser. The resulting page should display a table just like in the example before, but all the values in
the User name column will be modified, and the edit action for the administrator user will be grayed out
and won't be functional:

Kentico CMS Controls 185

© 2014 Kentico Software

1.9.2.4 Configuration

The following properties of the UniGrid control can be set or used in the API:

Property
Name

Description Sample Value

Columns Specifies the columns that should be loaded from the data
source specified in the DataSource property.

By default, the values of the first column are passed as the
actionArgument parameter of the OnAction event handler.
This can be overridden in the definition by specifying a column
name in the commandargument attribute of individual
<action> elements.

CompleteWher
eCondition

Can be used to get the used WHERE clause including any
modifications applied by the filter.

DataSource Can be used to gets or set the DataSet object containing the
data that the UniGrid displays.

You can alternatively assign the UniGrid's data through:

The control's ObjectType or Query properties
The objecttype or query elements in the UniGrid definition

DelayedReload If enabled, data will not be loaded automatically during the
Load event of the page and the ReloadData() method must be
called manually instead.

FilterDirectory
Path

Path to the control (.ascx file) that should be used instead of
the default filter. The default relative path is ~/
CMSAdminControls/UI/UniGrid/Filters/.

FilteredZeroRo
wsText

Text to be shown when no rows are displayed after the filter is
applied.

FilterLimit Determines the minimum amount of rows that must be
displayed in the UniGrid before a filter is shown. The default
value is read from the CMSDefaultListingFilterLimit

Kentico CMS 7.0 Controls186

© 2014 Kentico Software

web.config key.

GridName Contains the name of an external XML file that defines the
structure and behaviour of the UniGrid control. For more
information, please refer to the UniGrid definition topic.

GridView Can be used to access the GridView control encapsulated by
the UniGrid.

HideControlFor
ZeroRows

Indicates whether the control should be hidden when no rows
are loaded. The control is not hidden if the filter causes zero
rows to be displayed.

ImageDirectory
Path

Path to the directory that contains images used by the control.
The default value is ~/App_Themes/Default/Images/Design/
Controls/UniGrid/Actions.

NamedColumn
s

Gets a dictionary mapping custom names to DataControlField
objects that represent the columns of the UniGrid.

The names of columns can be specified in the UniGrid's
definition through the name attribute of individual <column>
elements.

This can be used to access the grid's columns in your code.

For example:

[C#]

UniGrid.NamedColumns["column1"].Visible = false;

When executed, this code would hide the column named
column1.

ObjectType Can be used to define the data class of the objects that should
be loaded as the data source and displayed by the UniGrid
control. A list of all available data classes and related
information can be found in the CMS_Class database table.

Alternatively, the same can be defined in the UniGrid's definition
through the <objecttype> element as described in the following
topic.

Please note that this approach is not supported for classes
representing document types (i.e. those whose value in the
ClassIsDocumentType column is 1). In these cases, you can
load the required data by specifying an appropriate query
through the Query property.

OrderBy The ORDER BY clause used to determine how the UniGrid
rows are sorted when the page is first loaded.

Kentico CMS Controls 187

© 2014 Kentico Software

Pager Can be used to access the UniGridPager control used for
paging.

PageSize This setting can be used to override the default values offered by
the page size selection drop-down list. Values must be
separated by commas.

The ##ALL## macro can be used as a value to indicate that all
rows should be displayed.

The default value is “25,50,100,##ALL##”.

"10,20,##ALL##"

Query Can be used to specify the name of the query that should be
used to retrieve data from the Kentico CMS database to be
displayed by the UniGrid control. The name is entered in format
<class name>.<query name>.

Alternatively, the same can be defined in the definition through
the <query> element as described in the following topic.

"cms.user.selectal
lview"

SelectedItems Gets (as an ArrayList) or sets the currently selected rows from
the UniGrid.

ShowActionsM
enu

Indicates whether the header of the actions column should
contain a context menu that provides the option to export the
data displayed in the grid into various other formats (Excel,
CSV or XML).

ShowObjectMe
nu

Indicates if an action providing a context menu with object
actions should automatically be added to the displayed grid.
This requires the data source of the UniGrid to be an object
type, specified either through the <objecttype> element or the
ObjectType property.

This menu provides options that can be used to Export,
Backup, Restore or Destroy individual listed objects. Some
types of objects may not have all menu options available.

This action is not added if there is another action specified that
has a contextmenu attribute or in cases where there are no
actions at all defined for the grid.

The default value is true.

SortDirect The ORDER BY clause reflecting the current row sorting being
used by the UniGrid.

TopN Specifies the maximum amount of rows that should be
selected.

WhereConditio
n

Can be used to get the used WHERE clause without
modifications applied by the filter.

ZeroRowsText Text to be shown when the control is hidden by the
HideControlForZeroRows property.

Kentico CMS 7.0 Controls188

© 2014 Kentico Software

The following events of the UniGrid control are available:

Event Name Description

OnAction

Occurs when one of the actions of the control is used. The name of the
given action is passed as a parameter to the handlers of the event. An
example of how it is used can be found in the tutorial found in the
Getting started topic.

OnExternalDataBound Occurs after data is loaded. It is used to implement a custom design or
functionality for UniGrid columns, including the action column. An
example of how it is used can be found in the Implementing custom
functionality topic.

OnBeforeDataReload This event can be used to perform any actions before the ReloadData()
method is executed.

OnAfterDataReload This event can be used to perform any actions after the ReloadData()
method is executed.

The following are application settings that you can use in your web.config to modify the behavior if
UniGrid instances throughout the system:

Key Description Sample Value

CMSDefaultListingFilterLimit Determines the minimum number of
items that must be included in a listing in
order for a filter to be shown. If the
number of listed items is lower than this
value, the filter is not displayed. If it is
larger, the filter is displayed. This applies
to all listings (UniGrid controls) across
the entire UI

The default value is 25.

The value of this key can be overridden for
individual UniGrid controls.

<add
key
=
"CMSDefaultListingFilter
Limit" value="40" />

CMSDefaultListingPageSize Initial page size (the Items per page
setting) of listings across the whole UI.

The default value is 25.

<add
key
=
"CMSDefaultListingPageSi
ze" value="50" />

CMSListingShowFirstLastButto
ns

If enabled, the first and last page link
buttons will be included in the pagers of
listings in the UI with a large enough
number of items. If disabled, the buttons
will always be hidden.

If both this and the
ShowDirectPageControl keys are
disabled, only TopN items are loaded,
while TopN = PageSize *

<add
key
=
"CMSListingShowFirstLast
Buttons" value="false" /
>

Kentico CMS Controls 189

© 2014 Kentico Software

(currentPageIndex +
CurrentPagesGroupSize).

The default value is true.

CMSListingShowDirectPageCo
ntrol

If enabled, a textbox that allows the
current page to be changed by directly
entering a number will be included in
pagers of listings in the UI with a large
enough number of items. If disabled, the
control will always be hidden.

If both this and the ShowFirstLastButtons
keys are disabled, only TopN items are
loaded, while TopN = PageSize *
(currentPageIndex +
CurrentPagesGroupSize).

The default value is true.

<add
key
=
"CMSListingShowDirectPag
eControl"
value="false" />

1.9.2.5 UniGrid definition

Many configuration options that determine the behavior, design and content of the UniGrid control must
be specifically defined. This can either be done either in an external XML configuration file, which is then
assigned to the control through its GridName property, or directly within the definition of the control in
the ASPX markup of the page or user control where the UniGrid is placed.

When using an external XML file, it must be organized according to the structure shown below (some
elements are optional):

<?xml version="1.0" encoding="utf-8" ?>

<grid>

 <actions>

 <action />

 <separator />

 ...

 </actions>

 <columns>

 <column>

 <tooltip />

 <filter />

 ...

 </column>

 ...

 </columns>

 <objecttype />

 <query>

 <parameter />

 ...

 </query>

Kentico CMS 7.0 Controls190

© 2014 Kentico Software

 <pager>

 <key name="DefaultPageSize" value="10" />

 ...

 </pager>

 <options>

 <key name="DisplayFilter" value="true" />

 ...

 </options>

</grid>

Important!

If you use an external XML configuration file to specify the UniGrid's definition, the
names of elements and their attributes used must be written in lower case to be
recognized correctly, since it is case sensitive.

To define the UniGrid directly in the ASPX markup, it is first necessary to register the following
namespace at the start of the code (in addition to the UniGrid control):

<%@ Register Namespace="CMS.UIControls.UniGridConfig" TagPrefix="ug"

Assembly="CMS.UIControls" %>

Then you can simply add elements under the control according to the following structure:

<cms:UniGrid runat="server" ID="UniGrid" ... >

 <GridActions>

 <ug:Action />

 <ug:ActionSeparator />

 ...

 </GridActions>

 <GridColumns>

 <ug:Column>

 <Tooltip />

 <Filter />

 ...

 </ug:Column>

 ...

 </GridColumns>

 <PagerConfig DisplayPager="true" ... />

 <GridOptions DisplayFilter="true" ... />

</cms:UniGrid>

When using this approach, the data source of the control must be specified directly through the

Kentico CMS Controls 191

© 2014 Kentico Software

UniGrid's properties (Query, ObjectType or DataSource). An advantage of this option is that you may
use the IntelliSense in Visual Studio to help find the appropriate elements and attributes.

Individual elements that can be defined for the UniGrid and their attributes are described below:

<actions>
<columns>
<objecttype>
<query>
<pager>
<options>

<actions> (<GridActions>):

This element is used to define a column that contains various possible actions (e.g. Edit, Delete,
View...) represented by icons for every row of the UniGrid. Individual actions must be defined by child
<action> elements.

The following attributes of the <actions> element are available:

Attribute Name Description Sample Value

cssclass Specifies the name of a CSS class from the
assigned stylesheet to be used to style the
appearance of the actions column.

"UniGridCustomActionsColu
mn"

parameters A list of columns separated by semicolons
that will be usable as parameters in the
onclick or menuparameter attributes of
child <action> elements .

"AttachmentGUID;
AttachmentFormGUID"

showheader Indicates whether the header of the actions
column should be displayed. The default
value is true.

width Determines the width of the actions column
in the UniGrid.

"30%"
"100px"

This element may contain <action> and <separator> child elements.

<action> (<ug:Action>):

This element is used to define individual actions. The implementation of individual actions is handled
during the OnAction event of the UniGrid control. Any advanced features of individual action buttons,
such as defining when a button should be functional, can be implemented in the handler of the
OnExternalDataBound event.

The following attributes are available:

Attribute Name Description Sample Value

Kentico CMS 7.0 Controls192

© 2014 Kentico Software

caption Specifies the text used as the tooltip of the
image defined in the icon attribute. You can
enter the name of a resource string enclosed
between $ characters.

"$General.Delete$"

commandargument The name of the column whose value should
be passed as the actionArgument
parameter of the OnAction event handler.

If not defined, the first column of the data
source will be used.

confirmation The text used in a JavaScript confirmation for
the action. Most commonly used as a
confirmation for delete type actions. You can
enter the name of a resource string enclosed
between $ characters.

"$General.ConfirmDelete$"

contextmenu The relative path to a control (.ascx file) that
implements a context menu for the action.
Controls created for this purpose must
inherit from the
CMS.ExtendedControls.CMSContextMen
uControl class.

"~/CMSAdminControls/UI/
UniGrid/Controls/
ObjectMenu.ascx"

externalsourcename Name of the action that is passed as the
sourceName parameter of the
OnExternalDataBound event handler.

"deletefile"

icon Name of the image that should be used as
the icon of the action. The image must be
located in the folder defined by the
ImageDirectoryPath property of the
UniGrid.

"delete.png"

menuparameter Contains an array of parameters passed to
the control implementing the action's context
menu (the path to this control must be
specified in the contextmenu attribute).
These parameters may be retrieved in the
control's code using the
GetContextMenuParameter JavaScript
function.

The columns defined in the parameters
attribute of the <actions> element may be
entered as parameters using the following
expressions:

{0} - first parameter
{1} - second parameter

and so forth.

"new Array('cms.site', '{0}')"

mousebutton Specifies which mouse button causes the "left"

Kentico CMS Controls 193

© 2014 Kentico Software

action's context menu to appear (if a context
menu is enabled via the contextmenu
attribute).

If not defined, both mouse buttons open the
context menu.

"right"

name Name of the action. This is passed to the
handler of the OnAction event as the
actionName parameter.

"delete"

onclick The JavaScript OnClick function for the given
action. It may use the columns defined in
the parameters attribute of the <actions>
element as parameters, which can be called
by using the following expressions:

{0} - first parameter
{1} - second parameter

and so forth.

"alert(‘{0}’);"

Action security

modulename This attribute (and the two listed below) may
be specified to leverage the security model
of Kentico CMS to make the action usable
only by a limited group of users. Enter the
code name of the module related to the
action.

You can find information about modules,
their permissions and UI elements in the
Site Manager -> Development ->
Modules interface.

"cms.ecommerce"

permissions Sets the code name of the permission that
users must have to be allowed to perform the
action. The permissions must belong to the
module specified in the modulename
attribute.

"modifyorders"

uielements If specified, users will need to be allowed to
view the given UI element in order to perform
the action. The given user interface element
must belong to the module specified in the
modulename attribute.

"orders.general"

hideifnotauthorized Indicates if the action should be hidden for
users who are not allowed to perform it (as
defined by the attributes above).

Kentico CMS 7.0 Controls194

© 2014 Kentico Software

Default object menu action

If your UniGrid control uses an object type data source (specified either through the
<objecttype> definition element or the ObjectType property), then an action providing a
context menu will automatically be added to the displayed grid.

This menu provides options that can be used to Export, Backup, Restore or Destroy
the listed objects. Some types of objects may not have all menu options available.

This does not occur if you manually specify another action with a contextmenu
attribute or in cases where there are no actions at all defined for the grid. You can also
disable this action by setting the ShowObjectMenu property of the UniGrid to false.

<separator> (<ug:ActionSeparator>):

This element is used to define a separator between actions. The following attribute is available for it:

Attribute Name Description Sample Value

text Text to be generated in the Literal control
between actions.

"<span class="

UniGridActionSeparator&q

uot;

>&nbsp;</

span>"

<columns> (<GridColumns>):

This element represents the main section of the UniGrid. The <columns> element itself has no attributes
as each column can have its own settings. Individual columns are defined by child <column> elements.

<column> (<ug:Column>):

This element is used to define columns. Any advanced functionality of the cells in the given column can
be implemented in the handler of the OnExternalDataBound event.

The following attributes are available for it:

Attribute Name Description Sample Value

action Can be used to set the name of an action
that will be performed when the content of
this column's cells is clicked. An action with
this name must be defined for the UniGrid via
the name attribute of an <action> element.

allowsorting Indicates whether the column can be used to
sort the rows of the UniGrid.

caption Specifies the text used as the header for the "$general.name$"

Kentico CMS Controls 195

© 2014 Kentico Software

column. You can enter the name of a
resource string enclosed between $
characters.

commandargument The name of the column whose value should
be passed as the actionArgument
parameter of the OnAction event handler
when the action specified via the action
attribute is used.

If not defined, the first column of the data
source will be used.

cssclass Specifies the name of a CSS class from the
assigned stylesheet to be used to style the
appearance of the given column.

"UniGridCustomColumn"

externalsourcename Sets a name for the column that will be
passed as the sourceName parameter of
the OnExternalDataBound event handler.
Used for implementing custom functionality
in the cells of the given column.

You can use the following expressions as
the value to call built-in functions of the
UniGrid that format the content of the
column without having to write any code:

#yesno - can be set for columns with a
source that uses the bit (boolean) data
type. The values are displayed as Yes
(colored green) or No (colored red).
#sitename - converts site ID (integer)
values into the appropriate site display
name for each row.
#sitenameorglobal - converts site ID
values into the appropriate site display
name for each row. If a record is not
related to a specific site (i.e. the site ID is
null), then the given cell displays (global)
as its value.
#countryname - converts ID (integer)
values into the display name of the
Country object with the given ID.
#culturename - converts culture code
text values into the full name of the
matching culture. Other available variants
are #cultureshortname and
#culturenamewithflag.
#username - converts ID (integer) values
into the user name of the User account
with the given ID.
#htmlencode - HTML encodes text

"user_modify"
"#yesno"
"#culturename|
{$general.default$}"

Kentico CMS 7.0 Controls196

© 2014 Kentico Software

values.
#url - converts URL text values into links.

To set a default value used if the result of the
function is null or an empty string, add the
"|" character as a separator and specify the
value after, for example: #username|None

You can also specify custom transformation
expressions for columns that contain the ID
values of other objects. For example, the
following externalsourcename values could
be used for a user ID column:

#transform: cms.user.fullname -
ensures that the full name is displayed for
each user instead of the ID.
#transform: cms.user : UserIsEditor
#yesno - checks the bit value of the
UserIsEditor column for each user and
formats it according to the internal #yesno
function.
#transform: cms.user : {%FullName%}
({%UserName%}) - loads the user object
with the matching ID for each row and
formats it according to the entered macro
expressions, e.g. Andrew Jones (Andy).

If a user decides to sort the UniGrid
according to this type of column, the order of
the rows will be based on the ID values, not
the output of the transformation.

href If a URL is entered here, a link to this URL is
generated around the content of the cells in
this column. Macros {0}, {1}, ... can be used
to access parameters defined by the
parameters attribute.

"~/page.aspx"

icon Name of an image that should be added into
the column cells after the loaded data. The
image must be located in the folder defined
by the ImageDirectoryPath property of the
UniGrid.

"edit.png"

istext Indicates whether the content of the column
is of type Text or nText. This is used to
generate a special OrderBy clause of the
query, so it must be set if sorting is enabled
for the column.

localize Indicates whether localization should be
enabled for string values in the column.

Kentico CMS Controls 197

© 2014 Kentico Software

maxlength Sets the maximum number of characters
that can be displayed in the column's cells.
The last 3 characters will be replaced by
periods.

name Can be used to set a custom name for the
column, which will be used in the column
dictionary accessible through the
NamedColumns property of the UniGrid
control.

parameters Names of the columns used as parameters
of the URL generated by the Href attribute.
Separated by semicolons.

source Name of the column from the data source of
the UniGrid that is used as the source for
the content of this column. The special
macro ##ALL## can be used to specify all
columns.

sort Used to define the column name to be used
for sorting if the ##ALL## macro is used in
the source attribute.

style The style used for the entire column. "padding:10px"

visible Indicates whether the column should be
visible.

width Determines the width of the column. "20%"
"200px"

wrap Indicates whether word wrapping is used in
the column.

The column element may contain child <tooltip> and <filter> elements.

<tooltip>:

When this element is added, a tooltip is displayed when the mouse hovers over the content of the cells
in this column. If an icon is present in the cell, the tooltip is displayed over the icon instead of the text.
The content of the tooltip can be defined and configured by the following attributes:

Attribute Name Description Sample Value

encode Indicates whether the output of the tooltip
should be encoded.

externalsourcename Name used in the OnExternalDataBound
event for changing the appearance of the
tooltip. This can be used to create complex
tooltips including images, panels etc.

source Name of the column from the data source of

Kentico CMS 7.0 Controls198

© 2014 Kentico Software

the UniGrid that is used as the source of the
tooltip.

width Determines the width of the tooltip.

<filter>:

When this element is added, the given column will be used in the UniGrid filter. The following attributes
are available to configure the filter:

Attribute Name Description Sample Value

format Can be used to define a custom WHERE
clause format to be generated by the default
filter. The following expressions can be used:

{0} - is resolved into the column name
{1} - is resolved into the operator selected in
the drop-down list of the default filter
{2} - is resolved into the value entered into
the textbox of the default filter

" [{0}] {1} '{2}' "

defaultvalue Can be used to specify a value that will be
preset in the filter when the page is loaded.
The entered value must match the type of
the filter.

path Path to the control (.ascx file) that should be
used instead of the default filter for the
column. If filled, the type attribute is ignored.
The default relative path is ~/
CMSAdminControls/UI/UniGrid/Filters/.

size Determines the maximum amount of
characters that can be entered into the
textbox of the default filter. Available for Text,
Integer and Double filter types. The default
value is 1000.

source Name of the column used in the WHERE
clause generated by the filter.

type Determines the filter type that should be
created for the given column. It is
recommended to set the value according to
the data type of the column: text, bool,
integer or double.

If your UniGrid control uses an object type
data source, it is also possible to filter
objects according to their binding to specific
sites. This can be achieved by creating a
<filter> element under any column (the data
of the column is not used) and setting the

"text"
"bool"
"integer"
"double"
"site"

Kentico CMS Controls 199

© 2014 Kentico Software

type value to site.

<objecttype>:

This element can be used to define the data class of the objects that should be loaded as the data
source and displayed by the UniGrid control. A list of all data classes and related information can be
found in the CMS_Class database table. Please note that this approach is not supported for classes
representing document types (those whose value in the ClassIsDocumentType column is 1). However,
it can be used to load data from custom tables.

If this element isn't used, a data source must be retrieved by means of the <query> element or
assigned through the UniGrid control's DataSource property before its ReloadData() method is called.
Alternatively, the ObjectType property of the UniGrid control can be used for the same purpose.

The following attributes can be used to define the object type:

Attribute Name Description Sample Value

columns Names of the columns that should be
retrieved separated by commas. If empty, all
columns will be retrieved.

By default, the values of the first column are
passed as the actionArgument parameter
of the OnAction event handler. This can be
overridden for actions by specifying a column
name in the commandargument attribute
of individual <action> elements.

name Code name of the used data class. "cms.user"

<query>:

This element can be used to specify the system query that will retrieve data from the Kentico CMS
database to be displayed by the UniGrid control. If it isn't used, an external data source must be
assigned through the UniGrid control's DataSource property before its ReloadData() method is called.
Alternatively, the Query property of the Unigrid control can be used for the same purpose.

The following attributes can be used to define the query:

Attribute Name Description Sample Value

columns Names of the columns that should be
retrieved by the query separated by
commas. If empty, all database columns will
be retrieved.

By default, the values of the first column are
passed as the actionArgument parameter
of the OnAction event handler. This can be
overridden for actions by specifying a column

Kentico CMS 7.0 Controls200

© 2014 Kentico Software

name in the commandargument attribute
of individual <action> elements.

name Code name of the used system query in
format <class name>.<query name>.

"cms.site.selectsitelist"

The query element may contain <parameter> child elements:

<parameter>:

This element can be used to define the value of a parameter inside the specified query.

The following attributes must be filled to define the parameter:

Attribute Name Description Sample Value

name Name of the parameter. Parameters are
placed into queries using the following
syntax: @<paramater name>

For example, if the specified query looked
like this:

SELECT TOP @customTop FROM CMS_User

Then entering customTop into this attribute
would cause the value of this element to be
used by the query instead of the
@customTop expression.

type The type of the parameter. "String"
"Int"
"Double"
"Bool"

value The value of the parameter.

<pager> (<PagerConfig>):

This element is used to define the behaviour of the UniGrid pager. You can either add the settings as
child <key> elements in the XML configuration file, or as attributes of the <PagerConfig> element when
defined directly in the code. The following are available:

Key name Description Sample Value

DisplayPager Indicates if a pager should be included below
the UniGrid. True by default.

<key name="DisplayPager"
 value="false" />

DefaultPageSize Defines the default amount of rows displayed
on one UniGrid page.

The value must be one of the options offered
by the page size selection drop-down list.

<key
name="DefaultPageSize"
value="10" />

Kentico CMS Controls 201

© 2014 Kentico Software

These values are defined by the
PageSizeOptions key.

PageSizeOptions This setting can be used to override the
default values offered by the page size
selection drop-down list. Values must be
separated by commas.

The ##ALL## macro can be used as a value
to indicate that all rows should be displayed.

The default value is “25,50,100,##ALL##”.

<key
name="PageSizeOptions"
value="10,20,##ALL##" />

ShowDirectPageControl Indicates whether a drop-down list used for
direct page selection should be displayed.

<key
name
="ShowDirectPageControl"
 value="true" />

ShowFirstLastButtons Indicates whether the buttons that link to the
first and last page should be displayed.

<key
name
="ShowFirstLastButtons"
value="false" />

ShowPageSize Indicates whether the page size selection
drop-down list should be displayed.

<key name="ShowPageSize"
 value="false" />

ShowPreviousNextButton
s

Indicates whether the buttons that link to the
previous and next page page should be
displayed.

<key
name
=
"ShowPreviousNextButtons
" value="false" />

ShowPreviousNextPageG
roup

Indicates whether the buttons that link to the
next group of page links should be displayed.

<key
name
=
"ShowPreviousNextPageGro
up" value="false" />

VisiblePages Determines the amount of displayed page
links in one group.

<key name="VisiblePages"
 value="5" />

<options> (<GridOptions>):

This element is used to define additional settings and special features of the UniGrid control. You can
either add the settings as child <key> elements in the XML configuration file, or as attributes of the
<GridOptions> element when defined directly in the code. The following are available:

Key name Description Sample Value

DisplayFilter Indicates whether a filter should be displayed
above the UniGrid. If the amount of displayed
rows is lower than the value of the
FilterLimit key, the filter will be hidden
despite this setting.

<key
name="DisplayFilter"
value="true" />

FilterLimit Determines the minimum amount of rows
that must be displayed in the UniGrid before

<key name="FilterLimit"
value="10" />

Kentico CMS 7.0 Controls202

© 2014 Kentico Software

a filter is shown. The default value is read
from the CMSDefaultListingFilterLimit
web.config key.

ShowSelection Indicates whether a column allowing the
selection of rows should be displayed on the
left of the UniGrid. This can be used to
perform mass actions affecting multiple rows.

The selected rows can be accessed through
the SelectedItems property of the UniGrid.

<key
name="ShowSelection"
value="true" />

SelectionColumn Name of the column used as an item in the
array of selected rows which can be
accessed through the SelectedItems
property of the UniGrid. By default the first
column in the data source is used.

<key
name="SelectionColumn"
value="SiteName" />

ShowSortDirection Determines if an arrow showing the sorting
direction should be displayed next to the
header of the column used for sorting.

<key
name="ShowSortDirection"
 value="false" />

1.9.3 UniSelector

1.9.3.1 Overview

The UniSelector is a user control that can be used to make a selection from a list of objects of a
specified data class, such as users, sites etc. Several different selection modes are supported, as is
extensive customization. This control can be found in many places within the user interface of Kentico
CMS.

Another advantage provided by the UniSelector over standard selection controls, such as the
DropDownList, is greater performance and scalability, since it is optimized to handle very large amounts
of objects.

Please be aware that using the UniSelector control beyond its most basic functions requires some
knowledge of coding and Kentico CMS API, because when a selection is made, the control only stores
the values of the selected objects. Any additional functionality, such as database changes, must be
implemented in the handlers of the control's events or using the Click event of a Button control used for
confirmation. A basic example can be found in the next topic.

The following topics are available to help you familiarize yourself with the UniSelector control:

Getting started - contains a step-by-step tutorial that allows you to learn the basics of using the
control
Configuration - describes the properties and events available for the control

1.9.3.2 Getting started

The following is a step-by-step tutorial that will show you how to use the UniSelector user control to
allow the selection of users from the system and perform a basic task with the selected user:

1. Create a new Web form called User_UniSelector.aspx somewhere in your website installation

Kentico CMS Controls 203

© 2014 Kentico Software

directory.

2. Add the following directive to the beginning of the page code to register the UniSelector control:

<%@ Register src="~/CMSAdminControls/UI/UniSelector/UniSelector.ascx"

tagname="UniSelector" tagprefix="cms" %>

3. Modify the <%@ Page %> directive at the top of the code as in the following example:

<%@ Page Language="C#" AutoEventWireup="true" CodeFile="User_UniSelector.aspx.cs"

Inherits="UniSelectorExample_User_UniSelector" Theme="Default" %>

The Theme attribute was added with its value set to "Default", which specifies the default theme used to
style the UniSelector control. Please keep in mind that the value of the Inherits attribute depends on the
location of the web form, so the example above will not match your code exactly.

4. Now add the following code into the content area of the page (by default between the <div> tags
inside the <form> element):

<ajaxToolkit:ToolkitScriptManager ID="manScript" runat="server"

EnableViewState="false" />

<table>

 <tr>

 <td>

 <cms:UniSelector ID="UserSelector" runat="server" ObjectType="cms.user"

 SelectionMode="SingleDropDownList" ReturnColumnName="UserName" />

 </td>

 </tr>

 <tr>

 <td>

 <asp:Button runat="server" ID="OKButton" onclick="OKButton_Click"

CssClass="SubmitButton" Text="OK" />

 </td>

 </tr>

 <tr>

 <td>

 <asp:Label runat="server" ID="lblButton" Visible="false" />

 </td>

 </tr>

</table>

This adds the UniSelector control, which is configured to allow the selection of user objects from a
drop-down list and to use the content of the UserName column in its value. For more information about
the available properties of the control, please refer to the Configuration topic. The code also contains a
Button and Label control, organized in a basic table layout, which will be used to demonstrate how a
basic task can be performed with the value of the UniSelector.

The ToolkitScriptManager control is required by the UniSelector control. It is only there to ensure that
the example is functional by itself and will usually be included on your website's master page, so you do
not have to add it in real-world scenarios.

Kentico CMS 7.0 Controls204

© 2014 Kentico Software

5. Switch to the code behind of the User_UniSelector.aspx web form and add the following code into it.
Please keep in mind that the name of the class will be different according to the location of your web
form.

[C#]

using CMS.GlobalHelper;

public partial class UniSelectorExample_User_UniSelector : System.Web.UI.Page

{

 /// <summary>

 /// Handles the Click event of the submit button.

 /// </summary>

 protected void OKButton_Click(object sender, EventArgs e)

 {

 //Assigns the value of the UniSelector control to be displayed by the Label

 lblButton.Visible = true;

 lblButton.Text = ValidationHelper.GetString(UserSelector.Value, null);

 }

}

This code causes the user name of the selected user to be displayed when the button on the page is
clicked. This code would also work if the UniSelector control used a SelectionMode that allowed the
selection of multiple users, the user names would all be displayed separated by semicolons.

This example only serves as a demonstration and the selection has no permanent effect, however, any
required functionality, such as changes in the database, can be implemented using the Kentico CMS
API in a similar fashion. Another option is to use handlers of the UniSelector events listed in the
Configuration topic.

6. Save the changes to both files. Now right-click the web form in the Solution explorer and select View
in Browser. The resulting page should display a drop-down list containing user names and an OK
button like in the following image:

If you select a user and click the button, the user name of the user will be displayed below:

1.9.3.3 Configuration

The following properties of the UniSelector control can be set or used in the API:

Property Name Description Sample Value

Kentico CMS Controls 205

© 2014 Kentico Software

AdditionalColumns Contains the names of columns that should
be loaded with the objects of the specified
data class in addition to those required by
default.

AdditionalSearchColum
ns

May be used to expand the search
functionality in the object selection dialog.
The columns specified through this property
will be included in the search in addition to
the display name column of the given type of
object.

Enter the names of the appropriate columns,
separated by commas.

"UserName, Email";

AllowAll Indicates whether the selector allows the all
value.

AllowEditTextBox Indicates whether the value of the TextBox
displayed in SingleTextBox or
MultipleTextBox SelectionMode can be
manually edited.

AllowEmpty Indicates whether the selector allows an
empty value.

If enabled, the (none) value is available in
SingleDropDownList SelectionMode and
the Clear button is displayed in
SingleTextBox and MultipleTextBox mode.

When an empty value is used, the Value of
the control is by default 0 in
SingleDropDownList SelectionMode or an
empty string in the remaining modes.

AllRecordValue Contains the value used when the (all) item
is selected in SingleDropDownList
SelectionMode. The default value is -1.

ButtonImage Can be used to enter a path to an image. If
specified, the selection button is displayed
as a LinkButton using this image. Only
applies if the SelectionMode is
SingleButton or MultipleButton.

"~/App_Themes/Default/
Images/SampleImage.png"

CacheMinutes Number of minutes that the content of the
control is cached for, so that it doesn't have
to be retrieved from the database each time
a user requests the page.

Zero indicates that caching will not be used.

-1 indicates that the site-level settings
should be used.

Kentico CMS 7.0 Controls206

© 2014 Kentico Software

Please refer to the Caching topic to learn
more.

DialogWindowHeight Determines the default height of the opened
selection window.

DialogWindowName Can be used to specify the name of the
selection window to prevent conflicts
between multiple UniSelector controls.

DialogWindowWidth Determines the default width of the opened
selection window.

DisplayNameFormat Used to modify the format of the display
names of objects in the selection list.

To correctly display values dependant on
individual objects, macro expressions in
format {%ColumnName%} must be used
here. The columns required by the used
macros are loaded automatically.

"{%FullName%}, {%Email
%}"

EditItemPageUrl Can be used to specify the URL of a custom
page that handles the editing of the selected
object. If a value is entered, an edit button
that links to the specified URL is displayed.
Only available for SingleTextBox and
SingleDropDownList SelectionMode.

The URL may contain macros in format
##<ITEM>ID##, which will be resolved into
the value of the selected object's ID column.
For example, <url>?userid=##USERID##
would contain the ID of the currently
selected user for a UniSelector set to use
the cms.user ObjectType.

EditWindowName Can be used to specify the name of the
object editing window to prevent conflicts
between multiple UniSelector controls.

EmptyReplacement Contains a string that is used in the
selection list as a replacement value for
objects whose display name column is
empty.

"N/A"

Enabled Indicates whether the control is enabled.

EnabledColumnName Can be used to specify the name of the
column that determines if the selected
object is enabled.

FilterControl
Path to the filter control (.ascx file; must
inherit from the
CMSAbstractBaseFilterControl class) that

"~/CMSFormControls/Filters/
CustomFilter.ascx"

Kentico CMS Controls 207

© 2014 Kentico Software

will be used for custom filtering of objects in
the selection window.

GridName Path to the XML configuration file of the
UniGrid control used to display and select
objects in Multiple SelectionMode.

IconPath Can be used to enter the path to the image
used in the title of the selection window.

ItemsPerPage Can be used to set the maximum amount of
displayed selected items per page in
Multiple SelectionMode.

LocalizeItems Indicates whether localization macros should
be resolved in the control.

MaxDisplayedItems Determines the maximum amount of items
displayed in the list in SingleDropDownList
SelectionMode if the number of selectable
objects is higher than the value of the
MaxDisplayedTotalItems property. The
remaining objects can be selected in a
dialog opened through the (more...) list
option.

The default value is 25.

MaxDisplayedTotalItem
s

If the total number of selectable objects is
lower than the value of this property, all of
them will be available in the list in
SingleDropDownList SelectionMode. If
there are more items, the length of the list
will match the value of the
MaxDisplayedItems property and the
(more..) option will be included.

The default value is 50.

You can also set this value globally for all
UniSelectors in your project through the
CMSSelectorMaxDisplayedTotalItems
key that can be added to the <appSettings>
section of your web.config.

NewItemPageUrl Can be used to specify the URL of a custom
page that handles the creation of new
objects. If a value is entered, a new button
that links to the specified URL is displayed.
Only available for SingleTextBox
SelectionMode.

NoneRecordValue Contains the value used when the (none)
item is selected in SingleDropDownList
SelectionMode. The default value is 0.

Kentico CMS 7.0 Controls208

© 2014 Kentico Software

ObjectType Specifies the data class of the objects to be
selected.

"cms.user"

OrderBy Contains the ORDER BY clause used to
determine the order of objects. Also affects
the order in the selection window.

RemoveConfirmation Can be used to specify the text displayed in
the confirmation message displayed when
removing selected items from the
UniSelector. Entering an empty string
disables the confirmation message.

ResourcePrefix Determines the prefix that is used in the full
names of resource strings (Keys) containing
the labels of the various interface elements
displayed by the UniSelector. This can be
used to assign custom strings to the control.

Custom strings can be created at CMS Site
Manager -> Development -> UI cultures -
> ... edit () a UI culture ... -> Strings.
The keys of these strings must use the
following format:
<ResourcePrefix>.<string name>

The following string names are available for
the UniSelector:

additems - text caption of the add items
button used to open the selection window
in Multiple mode
all - name of the list item representing the
selection of all available objects in
SingleDropDownList mode
clear - text caption of the clear button
used in TextBox modes
edit - text caption of the edit button used
in SingleTextBox and SingleDropDownList
mode
empty - name of the list item representing
an empty selection in SingleDropDownList
mode
itemname - header text of the column
containing the names of objects in the
selection window and the UniGrid
displaying selected objects in Multiple
mode
moreitems - name of the list item that
opens the selection window if the
maximum amount of list items is
exceeded in SingleDropDownList mode
new - text caption of the new button used

"mycustom"

Kentico CMS Controls 209

© 2014 Kentico Software

in SingleTextBox mode
newitem - name of the list item that
opens the new item page in
SingleDropDownList mode
nodata - text message displayed in
Multiple mode if no objects are selected
and the ZeroRowsText property is not
defined
pleaseselectitem - text of the JavaScript
alert displayed when the edit button is
used when no object is selected
removeall - text caption of the button
used to deselect all objects in Multiple
mode
removeselected - text caption of the
button used to deselect the specified
objects in Multiple mode
select - text caption of the select button
used to open the selection window in
TextBox and Button modes
selectitem - text of the labels associated
with the action elements used by the
UniSelector; this is also used to set the
title of the selection window

ReturnColumnName Specifies the name of the column used for
the values of selected objects by the
UniSelector. If empty, the ID column is
used.

To ensure correct functionality of the control,
the column must be a unique identifier for
the given object type.

SelectionMode Determines the design of the selection
dialog displayed by the control. The value of
this property affects the behaviour of many of
the other properties of the UniSelector
control.

The following modes are available:

SingleTextBox - consists of a button that
allows the selection of one object and a
TextBox displaying the selected value.
MultipleTextBox - consists of a button
that allows the selection of multiple
objects and a TextBox displaying the
selected values.
SingleDropDownList - displays a
drop-down list containing objects. If
necessary, the selection window can be
opened by selecting (more items ...) from

"SingleTextBox"
"MultipleTextBox"
"SingleDropDownList"
"Multiple"
"SingleButton"
"MultipleButton"

Kentico CMS 7.0 Controls210

© 2014 Kentico Software

the list.
Multiple - consists of a UniGrid control
displaying the selected objects and
buttons that can be used to add or remove
them.
SingleButton - consists of a button that
allows the selection of one object.
MultipleButton - consists of a button that
allows the selection of multiple objects.

SpecialFields Can be used to get or set a two dimensional
string array that contains custom items to
be displayed in SingleDropDownList
SelectionMode. The first value in the array
is the name of the item in the list, the
second represents the value of that item
when it is selected.

UseDefaultNameFilter Indicates whether the default name filter
should be used in the selection window. Can
be used to disable the default filter if a
custom filter is specified through the
FilterControl property.

Value Can be used to get or set the selected value
of the control. The column that is used for
the values of selected objects can be
specified in the ReturnColumnName
property.

ValuesSeparator Specifies the character used to separate
selected values in the case of multiple
selection. A semicolon (" ; ") is used by
default.

WhereCondition Contains the WHERE clause used for the
list of objects available for selection.

ZeroRowsText Can be used to specify the text displayed
when no objects are selected in Multiple
SelectionMode.

The following events of the UniSelector control are available:

Event Name Description

OnItemsSelected
Occurs when an object or objects are selected in SingleButton and
MultipleButton Selection Mode. This event is not raised in other
modes.

OnSelectionChanged Occurs when the set of selected objects is changed. The event is not
raised in SingleButton or MultipleButton SelectionMode and may not
always be triggered in TextBox modes depending on how the selection

Kentico CMS Controls 211

© 2014 Kentico Software

is changed.

This event is usually used to perform tasks with selected objects in
Multiple mode without the need for a confirmation button.

Kentico CMS 7.0 Controls212

© 2014 Kentico Software

Index
- B -
Basic controls - Listings and viewers

BasicCalendar 51

BasicDataGrid 54

BasicDataList 57

BasicRepeater 61

BasicUniView 65

Basic controls - Navigation

BasicTabControl 46

- C -
CMS controls - Buttons

CMSEditModeButtonAdd 157

CMSEditModeButtonEditDelete 159

CMS controls - Editable regions

CMSEditableImage 162

CMSEditableRegion 164

CMSPageManager 166

CMS controls - Listings and viewers

CMSCalendar 119

CMSDataGrid 121

CMSDataList 124

CMSDocumentValue 127

CMSRepeater 128

CMSUniView 131

CMSViewer 139

CMS controls - Listings and viewers - Custom query

QueryDataGrid 142

QueryDataList 144

QueryRepeater 147

QueryUniView 150

CMS controls - Navigation

CMSBreadCrumbs 81

CMSListMenu 84

CMSMenu 90

CMSSiteMap 95

CMSTabControl 99

CMSTreeMenu 102

CMSTreeView 107

CMS controls - Search

CMSSearchDialog 170

CMSSearchResults 174

- G -
Generic controls

UniView 17

Generic controls - Pagers

DataPager 28

TemplateDataPager 32

UniPager 36

- U -
UI controls

UniGrid 179

UniSelector 202

	Kentico CMS Controls
	Overview
	Configuring your project for Kentico CMS Controls
	Using ASPX page templates
	Transformations
	Controls hierarchy
	Generic Controls
	Overview
	UniView
	Overview
	Getting started
	Configuration
	Appearance and styling

	Paging controls
	Overview
	Paging controls - common properties
	DataPager
	Overview
	Getting started
	Configuration
	Appearance and styling

	TemplateDataPager
	Overview
	Getting started
	Configuration
	Appearance and styling

	UniPager
	Overview
	Getting started
	Configuration
	Structure
	Appearance and styling
	Implementing the IUniPageable interface

	Basic Controls
	Overview
	Navigation
	Overview
	BasicTabControl
	Overview
	Getting started
	Configuration
	Appearance and styling

	Listings and viewers
	Overview
	BasicCalendar
	Overview
	Getting started
	Configuration
	Appearance and styling

	BasicDataGrid
	Overview
	Getting started
	Configuration
	Appearance and styling

	BasicDataList
	Overview
	Getting started
	Configuration
	Appearance and styling

	BasicRepeater
	Overview
	Getting started
	Configuration
	Appearance and styling

	BasicUniView
	Overview
	Getting started
	Configuration
	Appearance and styling

	CMS Controls
	Overview
	Path specification in controls and web parts
	Caching
	CMS controls - common properties
	Navigation
	Overview
	Document menu settings
	Using the CSSPrefix property
	CMS navigation - common properties
	CMSBreadCrumbs
	Overview
	Getting started
	Configuration
	Appearance and styling

	CMSListMenu
	Overview
	Getting started
	Configuration
	Appearance and styling
	General
	Creating a horizontal drop-down menu using CSS styles
	Creating a vertical drop-down menu using CSS styles

	CMSMenu
	Overview
	Getting started
	Configuration
	Appearance and styling

	CMSSiteMap
	Overview
	Getting started
	Configuration
	Appearance and styling

	CMSTabControl
	Overview
	Getting started
	Configuration
	Appearance and styling

	CMSTreeMenu
	Overview
	Getting started
	Configuration
	Appearance and styling

	CMSTreeView
	Overview
	Getting started
	Configuration
	Appearance and styling

	Listings and viewers
	Overview
	Standard listings and viewers
	Overview
	Using nested controls
	Displaying related documents
	CMSCalendar
	Overview
	Getting started
	Configuration
	Appearance and styling

	CMSDataGrid
	Overview
	Getting started
	Configuration
	Appearance and styling

	CMSDataList
	Overview
	Getting started
	Configuration
	Appearance and styling

	CMSDocumentValue
	Overview
	Getting started
	Configuration

	CMSRepeater
	Overview
	Getting started
	Configuration
	Appearance and styling

	CMSUniView
	Overview
	Getting started
	Configuration
	Using hierarchical transformations
	Appearance and styling

	CMSViewer
	Overview
	Getting started
	Configuration
	Appearance and styling

	Listings and viewers with a custom query
	Overview
	Using control properties to set query clauses
	CMS Custom query - common properties
	QueryDataGrid
	Overview
	Getting started
	Configuration
	Appearance and styling

	QueryDataList
	Overview
	Getting started
	Configuration
	Appearance and styling

	QueryRepeater
	Overview
	Getting started
	Configuration
	Appearance and styling

	QueryUniView
	Overview
	Getting started
	Configuration
	Appearance and styling

	Edit mode buttons
	Overview
	CMSEditModeButtonAdd
	Overview
	Getting started
	Configuration
	Appearance and styling

	CMSEditModeButtonEditDelete
	Overview
	Getting started
	Configuration
	Appearance and styling

	Editable regions for ASPX page templates
	Overview
	CMSEditableImage
	Overview
	Getting started
	Configuration

	CMSEditableRegion
	Overview
	Getting started
	Configuration
	Appearance and styling

	CMSPageManager
	Overview
	Getting started
	Configuration
	Appearance and styling

	Search Controls
	Overview
	CMSSearchDialog
	Overview
	Getting started
	Configuration
	Structure
	Appearance and styling

	CMSSearchResults
	Overview
	Configuration
	Structure
	Appearance and styling

	UI Controls
	Overview
	UniGrid
	Overview
	Getting started
	Implementing custom functionality
	Configuration
	UniGrid definition

	UniSelector
	Overview
	Getting started
	Configuration

